Смекни!
smekni.com

Информатика как единство науки и технологии (стр. 9 из 30)

Графическая информация на экране монитора представляется в виде (изображения, которое формируется из точек (пикселей). В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь лишь два состояния — «черная» или «белая», т.е. для хранения ее состояния необходим 1 бит.

Цветные изображения могут иметь различную глубину цвета (бит на точку: 4. 8, 16, 24). Каждый цвет можно рассматривать как возможное состояние точки, и тогда по формуле N = 21 может быть вычислено количество цветов, отображаемых на экране монитора.

Изображение может иметь различный размер, который определяется количеством точек по горизонтали и по вертикали. В современных персональных компьютерах обычно используются четыре основных размера изображения или разрешающих способностей экрана: 640*480, 800*600, 1024*768 и 1280*1024 точки.

Графический режим вывода изображения на экран определяется разрешающей способностью экрана и глубиной цвета. Полная информация о всех точках изображения, хранящаяся в видеопамяти, называется битовой картой изображения.

Для того чтобы на экране монитора формировалось изображение, информация о каждой его точке (цвет точки) должна храниться в видеопамяти компьютера. Рассчитаем необходимый объем видеопамяти для наиболее распространенного в настоящее время графического режима (800*600 точек, 16 бит на точку).

Всего точек на экране: 800 * 600 = 480000

Необходимый объем видеопамяти: 16 бит * 480000 = 7680000 бит = 960000 байт = 937,5 Кбайт.

Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов.

Таблица . Объем видеопамяти для различных графических режимов

Современные компьютеры обладают такими техническими характери­стиками, которые позволяют обрабатывать и выводить на экран, так называемое «живое видео», т.е. видеоизображение естественных объектов. Видеоизображение формируется из отдельных кадров, которые сменяют друг друга с высокой частотой (не воспринимаемой глазом). Обычно частота кадров составляет 25 Гц, т.е. за 1 секунду сменяется 25 кадров.

Двоичное кодирование звуковой информации

С начала 90-х годов персональные компьютеры получили возмож­ность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию. С помощью специальных про­граммных средств (редакторов аудиофайлов) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и появляется возможность управления компьютером при помощи голоса.

Звуковой сигнал - это непрерывная волна с изменяющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компью­тер мог обрабатывать непрерывный звуковой сигнал, он должен быть дистретизирован, т.е. превращен в последовательность электрических им­пульсов (двоичных нулей и единиц).

При двоичном кодировании непрерывного звукового сигнала он заменяется серией его отдельных выборок — отсчетов.

Современные звуковые карты могут обеспечить кодирование 65536 различных уровней сигнала или состояний. Для определения количества бит, необходимых для кодирования, решим показательное уравнение:

Таким образом, современные звуковые карты обеспечивают 16-битное кодирование звука. При каждой выборке значению амплитуды звукового сигнала присваивается 16-битный код.

Количество выборок в секунду может быть в диапазоне от 8000 до 48000, т.е. частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 Кгц. При частоте 8 Кгц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 Кгц - качеству звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы.

Можно оценить информационный объем моном аудио файла длительно­стью звучания 1 секунду при среднем качестве звука (16 бит, 24 Кгц). Для этого количество бит на одну выборку необходимо умножить на количе­ство выборок в 1 секунду:

16 бит * 24000 = 384000 бит = 48000 байт или 47 Кбайт

8

Определить понятие "количество информации" довольно сложно. В решении этой проблемы существует два основных подхода. Исторически они возникли почти одновременно. В конце 1940 г. один из основоположников кибирнетиеи американский математик Клож Шенон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к "объемному подходу".

Количество информации как мера уменьшения неопределенности
(вероятностный подход)

С точки зрения отдельного человека, ценность информации определяется тем, насколько она проясняет для него какой-либо вопрос, то есть уменьшает неопределенность ситуации. При этом количество одной и той же информации может быть оценено различными людьми по-разному. Для объективного измерения количества информации необходимо формализовать задачу.

Будем считать события равновозможными, если мы не располагаем заранее никакой информацией (статистическими данными, логическими умозаключениями и т.д.), о том, что шансы одного из событий выше или ниже, чем шансы любого другого. При этом имеется в виду, что в результате опыта обязательно наступит какое-либо событие и притом только одно.

Так, например, при подбрасывании монеты выпадение орла или решки можно считать равновозможными событиями, предполагая монету идеальной, то есть исключив из рассмотрения возможность других исходов ("зависла в воздухе", "встала на ребро"), а также влияние на исход опыта чеканки на сторонах монеты, отклонения формы реальной монеты от правильной и т. д.

Чем больше равновозможных событий, тем больше неопределенность ситуации. Минимальный размер сообщения о том, что произошло одно из двух равновозможных событий, равен одному биту. Информацию о том, что произошло первое событие, можно закодировать в двоичном алфавите нулем, а о том, что произошло второе событие – единицей.

Для уменьшения неопределенности в два раза (вместо двух возможных событий – одно реально произошедшее) требуется один бит информации. Иначе говоря, сообщение, уменьшающее неопределенность ситуации в два раза, несет один бит информации. Если его длина, подсчитанная с использованием алфавитного подхода, больше, значит сообщение несет избыточную, с точки зрения уменьшения неопределенности, информацию.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания идеальной монеты (два равновозможных события) несет один бит информации.

Можно рассчитать длину сообщения в двоичном алфавите, необходимую для передачи информации. Для уменьшения неопределенности ситуации в 2n раз необходимо n бит информации.

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания двух идеальных монет (четыре равновозможных события: орел-решка; решка-орел; орел-орел; решка-решка) несет два бита информации. Действительно, 2n в данном случае равняется четырем, следовательно n = 2.

Задача нахождения n по известному значению k = 2n решается нахождением логарифма числа k по основанию 2, поэтому, для того, чтобы закодировать информацию, уменьшающую неопределенность в k раз, необходимо log2k бит информации. Приведем таблицу некоторых двоичных логарифмов, являющихся целыми числами. n log2k

Пример. С точки зрения уменьшения неопределенности, сообщение о исходе опыта бросания точечного объекта на шахматную доску (равновозможные события - попадания в одну из 64 клеток) несет 6 бит информации. Действительно, k в данном случае равняется 64, log264 = 6. Минимальная длина двоичного сообщения также будет равна 6. Подробнее: номер клетки доски по вертикали можно закодировать целым числом от 0 до 7. Для этого требуется 3 двоичных разряда (см. Системы счисления). Еще 3 разряда нужны для того, чтобы закодировать номер клетки доски по горизонтали, 3+3=6. Можно также просто пронумеровать все клетки числами от 0 до 63. Для этого опять-таки потребуется 6 разрядов.

Если используется алфавит, состоящий не из двух, а из 2p знаков, то каждый знак может нести информацию, уменьшающую неопределенность ситуации в 2p раз. Таким образом, сообщение из m знаков позволяет уменьшить неопределенность в (2p)m = 2pm раз, то есть его информационный объем равен m·p бит, что согласуется с результатом, полученным при использовании алфавитного подхода.

Пример. Пусть для кодирования сообщения о попадании точечного объекта на клетку шахматной доски используется алфавит из 8 символов (2p = 8, следовательно p = 3). Сообщение уменьшает неопределенность в 64 раза, следовательно 2pm = 23m = 64, отсюда 3m = log264 = 6; m = 2, то есть для кодирования информации попадании точечного объекта на клетку шахматной доски потребуется сообщение из двух знаков восьмисимвольного алфавита. Действительно, в первом знаке сообщения можно закодировать, например, информацию о горизонтали клетки, а во втором — о вертикали. В общепринятой шахматной нотации фактически используется указанный способ именования клеток, только для удобства чтения первый символ сообщения записывается как буква, а второй - как цифра. С математической точки зрения ничто не мешает обозначать клетки a1 и h8 как aa и hh или 11 и 88, используя только 8 символов.

Алфавитный подход

Если информация представлена в виде дискретного сообщения, то логично считать количеством информации его длину, то есть общее число знаков в сообщении. Но длина сообщения зависит не только от содержащейся в нем информации. На нее влияет мощность алфавита используемого языка. Чем меньше знаков в используемом алфавите, тем длиннее сообщение. Так, например, в алфавите азбуки Морзе всего три знака (точка, тире, пауза), поэтому для кодирования каждой русской или латинской буквы нужно использовать несколько знаков, и текст, закодированный по Морзе, будет намного длиннее, чем при обычной записи.

Пример: Сигнал SOS: 3 знака в латинском алфавите;

11 знаков в алфавите Морзе: ··· пауза – – – пауза ···.

Для упорядочивания измерений информационный объем сообщений принято измерять в битах. Один бит соответствует одному знаку двоичного алфавита. Итак, чтобы измерить длину сообщения, его нужно представить в двоичном виде и подсчитать количество двоичных знаков – битов. При этом совсем не обязательно уметь интерпретировать сообщения.

Пример: Пусть сообщение в двоичном алфавите выглядит следующим образом: 000100010001. Мы не знаем, какая информация была заложена в этом сообщении, но можем легко подсчитать его длину – 12 двоичных знаков, следовательно, его информационный объем равен 12-ти битам.

Такой способ измерения количества информации называется алфавитным подходом. При этом измеряется не содержание информации с точки зрения его новизны и полезности, а размер несущего информацию сообщения. Мы уже убедились, что при алфавитном подходе к определению количества информации одни и те же сведения, закодированные по-разному, будут иметь различный информационный объем. Сообщения одинаковой длины могут нести совершенно как совершенно бесполезные сведения, так и нужную информацию. Пример: Применяя алфавитный подход, получаем, что информационный объем слов “фыырпбьощ” и “компьютер” совершенно одинаков, а слов “ученик” и “учащийся” – различен.

Если алфавит содержит 2n знаков, то каждый из его знаков можно закодировать с помощью n знаков двоичного алфавита. Таким образом, объем информации, содержащейся в сообщении длиной m при использовании алфавита мощностью 2n, равен m·n бит.
Пример:

Найдем информационный объем слова SOS, записанного в компьютерной кодировке. При кодировании букв в компьютере используется либо алфавит ASCII (American Standard Code for Information Interchange — американский стандартный код обмена информацией), состоящий из 28=256 знаков, либо алфавит Unicode, мощность которого 216 = 65536. В слове SOS три буквы, следовательно, его информационный объем 3·8=24 или 3·16=48 бит, в зависимости от используемой кодировки.

Алфавитный подход удобен при подсчете количества информации, хранимого, передаваемого и обрабатываемого техническими устройствами. Действительно, устройствам нет дела до содержательной стороны сообщений. Компьютеры, принтеры, модемы работают не с самой информацией а с ее представлением в виде сообщений. Оценить информационные результаты их работы как полезные или бесполезные может только человек.

Единицы измерения информации

Для удобства, помимо бита используются более крупные единицы измерения количества информации. Вот соотношения между ними:

То, что отношения между единицами измерения кратны степеням 2, объясняется большим теоретическим и практическим значением двоичного кодирования в информатике.