Смекни!
smekni.com

Микроэлектроника (стр. 5 из 6)

Э2 Б2

Э4 Э1 Э3 Б3

1 2 3 4 5 6 7 8 9


Рис. 6

2.6 Выбор корпуса

Корпус предназначен для защиты микросхемы от механических и других воздействий дестабилизирующих факторов (температуры , влажности , солнечной радиации,пыли, агрессивных химических и биологических сред и т.д.)

Конструкция корпуса должна удовлетворять следующим требованиям: надежно защищать элементы и соединения микросхемы от воздействий окружающей среды и, кроме того, обеспечивать чистоту и стабильность характеристик материалов, находящихся в непосредственном соприкосновении с кристаллом полупроводниковой микросхемы или платой гибридной микросхемы, обеспечивать удобство и надёжность монтажа и сборки микросхемы в корпус; отводить от неё тепло; обеспечивать электрическую изоляцию между токопроводящими элементами микросхемы и корпусом; обладать коррозийной и радиационной стойкостью; обеспечивать надежное крепление, удобство монтажа и сборки корпусов в составе конструкции ячеек и блоков микроэлектронной аппаратуры, быть простой и дешёвой в изготовлении,обладать высокой надёжностью.

Для микросхем серии K224 используется используется мателло-стекляный корпус типа «Трап», так он имеет необходимое количество выводов и удовлетворяет всем необходимым требованиям.Данный корпус имеет прямоугольную форму. Все 9 выводов расположены в один ряд по одной стороне.

Некоторые параметры корпуса представлены ниже:

масса - 3.0 г;

мощность рассеивания при Т=20°С - 2 Вт

метод герметизации корпуса - аргонодуговой.

3. РАСЧЕТНЫЙ РАЗДЕЛ

3.1 Методика расчета пассивных элементов

3.1.1 Методика расчета тонкопленочных резисторов

Конструктивный расчет тонкопленочных резисторов сводится к определению формы, геометрических размеров и минимальной площади, занимаемой резисторами на подложке.

Определяем оптимальное значение сопротивления квадрата резистивной пленки:

Для реализации пленочных резисторов выбираем резистивный материал с удельным сопротивлением, близким к расчетному.

Для резисторов R1..R3,R5..R9 (rs.опт= 14.8 кОм/ð) наиболее целесообразно использовать резистивный материал кермет K50-C ЕТО.021.013 ТУ (rs=10 кОм/ð, P0=2 Вт/см2, ТКR = -5 × 10-4 ).

Для резистора R4 (rs опт = 150 Ом/ð) – нихром Х20Н80 ГОСТ 2238-58 (rs = 50 Ом/ð, P0=2 Вт/см2, ТКR = -2.25 × 10-4)

Проводим проверку правильности выбранного материала с точки зрения точности изготовления резисторов.

Точность изготовления резистора зависит от погрешности Kф (gКф), от темпрературной погрешности (gRt°), погрешности воспроизведения удельного сопротивления резистивной пленки (grs), от погрешности старения (gст) и от погрешности сопротивления на переходных контактах (gRпк):

gR = gКф + grs + gRt°+ gRст + gRпк

Погрешность Кф определяет точность геометрических размеров резистора:

gКф = gR - grs - gRt°- gRст - gRпк

Погрешность Кф зависит от погрешности геометрических размеров:

Погрешность воспроизведения удельного сопротивления зависит от условий нанесения пленки. В условиях стандартной технологии и серийного производства, grs= 5%.

Температурная погрешность зависит от ТКR:

gRt°=aR (Tmax - 20°C)

Погрешность старения зависит от материала пленки, защиты и условий эксплуатации:

gRст= 3%

Погрешность переходных контактов зависит от геометрических размеров контактных площадок и площади перекрытия их и резистивной пленки.

gRпк = 1%

Погрешность Кф для первого материала (кермет):

gRt°=-5 × 10-4(55- 20) = -1.75%

gКф = 30 - 5 + 1.75 -3 -1 = 22.75%

Погрешность Кф для второго материала (нихром):

gRt°=-2.25 × 10-4(55- 20) = -0.79%

gКф = 25 - 5 + 0.79 -3 -1 = 16.79%

Определяем геометрические размеры резисторов по значению коэффициента формы.

Так как коэффициент формы лежит в пределах от 1 до 10, то наиболее оптимальной будет прямоугольная форма резистора.

bрассч³max íbточн., bmin, bрý

Для масочного способа получения конфигурации bmin = 200мкм.

bрассч= 200 мкм

bтоп - ближайшее кратное шагу координатной сетки. При масштабе 20:1 шаг координатной сетки равен 50 мкм.

bтоп = 200 мкм

lрассч = bрассч×Кф= 200 × 2.2 = 440 мкм

lполн = lтоп + 2e

e=20 мкм

lтоп =450 мкм

lполн = 450 + 40 = 490

Определяем площадь, которую будет занимать резистор на подложке.

S = b×lполн = 200 × 490 = 98000 мкм

Результаты расчета резисторов при помощи программы представлены в таблице 3.

Таблица 3

Результаты расчета тонкопленочных резисторов

R1 R2 R3 R4 R5 R6 R7 R8 R9
Длина l, мкм 490 490 200 640 490 200 490 200 200
Ширина b, мкм 200 200 200 200 200 200 200 200 200
Площадь S,мкм2 98000 98000 48000 128000 98000 48000 98000 48000 48000

3.1.2 Методика расчета тонкопленочных конденсаторов

Расчет сводится к опредению площади перекрытия обкладок.

Минимальная толщина диэлектрического слоя ограничена требованием получения сплошной пленки без сквозных отверстий и с заданной электрической прочностью. Минимальная толщина диэлектрика определяется по формуле:

dmin = KзUраб/Eпр = 3 × 12/3 × 106 = 0.12 мкм

Kз- коэффициент запаса электрической прочности. Для пленочных конденсаторов Kз=3;

Uраб - рабочее напряжение;

Eпр- электрическая прочность материала диэлектрика.

Определяем удельную емкость конденсатора, исходя из условия электрической прочности:

C0V = 0.0885e/d = 0.0885 × 5.2/0.12 × 10-4= 383 Пф/мм2

Оцениваем относительную температурную погрешность:

gCt = aC (Tmax - 20°C) = 1.5 × 10-4 (55 - 20) = 0.52%

aC - ТКС материала диэлектрика;

Tmax - максимальная рабочая температура микросхемы.

Суммарная относительная погрешность емкости конденсатора определяется по формуле:

gC= gС0 + gSдоп+ gCt + gCст

Относительная погрешность удельной емкости зависит от материала и погрешности толщины диэлектрика и составляет 5%:

gС0= 5%

Относительная погрешность, обусловленная старением пленок конденсатора зависит от материала и метода защиты и обычно не превышает 3%:

gCст = 3%

Допустимая погрешность активной площади пленочного конденсатора зависит от точности геометрических размеров, формы и площади верхних обкладок и определяется по формуле:

gSдоп = gС - gC0 - gCt - gCст

gSдоп ³gS