Смекни!
smekni.com

Микроэлектроника (стр. 6 из 6)

DL - погрешность длины верхней обкладки.При масочном способе получения конфигурацииDL=0.01 мм.

Расчет площади производим из условия квадратной формы обкладок (L=B, Кф=1/2)

C0£íC0 точн, C0Vý

C0 = 383 Пф/мм2

Наиболее целесообразно выбрать материал стекло электровакуумное C41-1 с C0 = 400 Пф/мм2, но так как рабочее напряжение данного материала - 6.3 В, а рабочее напряжение конденсатора - 12 В, то данный материал не подходити нужно выбрать другой материал - стекло электровакуумное C41-1 с C0 = 200 пФ/мм2 и рабочим напряжением 12.6 В.

Определяем коэффициент формы:

Кф= C/C0= 430/200 = 2.15

Так как Кф лежит в пределах от 1 до 5, то коэффициент, учитывающий краевой эффект K=1.3.

Определяем площадь верхней обкладки:

S=C/C0K=1.654 мм2

Определяем размеры верхней обкладки конденсатора:

L=B=ÖS=1.29мм

Определяем размеры нижней обкладки:

Lн=Bн=L+2q

Размер перекрытия нижней и верхней обкладок q=0.2мм.

Lн=Bн=1.68мм

Определяем размеры диэлектрика:

Lд=Bд=Lн +2f

Размер перекрытия диэлектрика и нижней обкладки f=0.1мм.

Lд=Bд=1.88мм

Результаты расчета конденсаторов при помощи программы представлены в таблице 4.

Таблица 4

Результаты расчета тонкопленочных конденсаторов

С1 С2 С3 С4
Длина L, мм 1.29 0.88 1.29 0.88
Ширина B,мм 1.29 0.88 1.29 0.88
Площать S,мм2 1.654 0.769 1.654 0.769

3.2 Программы расчета пассивных элементов

3.2.1 Программа расчета тонкопленочных резисторов

CLS

PRINT : PRINT "----------------"

INPUT "Номинал резистора, Ом"; r

INPUT "Удельное сопротивления резистивной пленки, Ом/квадрат"; r0

kf = r / r0

PRINT "Кф="; kf

deltaL = .01

deltaB = .01

INPUT "Погрешность Кф"; Fkf

INPUT "Рассеиваемая мощность P0 в Вт/см^2 * 10^-3"; p0

p0 = 2

INPUT "Мощность резистора P в мВт"; p

bt = ((deltaB + deltaL / kf) / Fkf) * 1000

br = SQR(p / (p0 * 10 ^ -3 * kf))

bmin = 200

PRINT "Bточн = "; bt; "мкм"

PRINT "Bр = "; br; "мкм"

PRINT "Bmin = "; bmin; "мкм"

bras = bt

IF br > bras THEN bras = br

IF bmin > bras THEN bras = bmin

PRINT "----------> Bрасч="; bras

INPUT "Bтоп - ближайшее кратное шагу координатной сетки. Bтоп="; btop

lras = bras * kf

e = 20

PRINT "Lрасч = ;"; lras

INPUT "Lтоп - ближайшее кратное шагу координатной сетки. Lтоп="; ltop

lpoln = ltop + 2 * e

S = btop * lpoln

PRINT "Площадь S="; S

END

3.2.2 Программа расчета тонкопленочных конденсаторов

CLS

INPUT "C="; c

INPUT "C0="; c0

cc0 = c / c0

PRINT "c/c0"; cc0

IF cc0 >= 5 THEN k = 1

IF cc0 >= 1 AND cc0 < 5 THEN k = 1.3

PRINT "k="; k

s = c / (c0 * k)

PRINT "S="; s

L = SQR(s)

PRINT "L="; L

b = s / L

PRINT "B="; b

q = .2

f = .1

ln = L + 2 * q

bn = ln

PRINT "Lн="; ln

PRINT "Bn="; bn

ld = ln + 2 * f

bd = ld

PRINT "Lд="; ld

PRINT "Bд="; bd

END

3.3 Расчет площади подложки

Расчет площади подложки сводится к определению суммы площадей резисторов, конденсаторов, навесных элементов, внутренних и всешних контактных площадок.

Площадь платы, необходимая для размещения топологической структуры ИМС, определяют исходя из того, что полезная площадь платы меньше ее полной площади, что обусловлено технологическими требованиями и ограничениями. С этой целью принимают коэффициент запаса K, значение которого зависит от сложности схемы и способа ее изготовления составляет 2-3. Для данной схемы K=3.

Наиболее целесообразно выбрать размер платы 5x6мм, но, так как в схеме все внешние контактные площадки расположены в один ряд, необходимо выбрать размер платы 8x15мм.

3.4 Оценка теплового режима

Расчет сводится к определению температуры транзисторов и всех резисторов.

Нормальный тепловой режим обеспечивается при выполнении условий:

Tэ=Tc max+Qк + Qэ£Tmax доп,

Tнк=Tc max+Qк + Qэ + Qвн £Tmax доп,

где Tmax - максимальная температура окружающей среды в процессе эксплуатации;

Т max доп - максимальная допустимая рабочая температура элементов и компонентов, заданная ТУ.

Qк - перегрев корпуса;

Qэ - перегрев элементов;

Qвн - перегрев областей p-n переходов транзисторов.

Максимальная температурапри эксплуатации интегральной микросхемы K2TC241 TCmax = 55°С. Потребляемая мощность - 150мВт.

Перегрев корпуса определяется конструкцией корпуса и мощностью рассеяния микросхемы, особенностей монтажа, способа охлаждения и оценивается по формуле:

Qк= PS/(a× St),

где PS - потребляемая мощность микросхемы;

a = 3 × 102Вт/м2 - коэффициент теплопередачи при теплоотводе через слой клея.

St = 8 × 15 мм - площадь контакта корпуса с теплоотводом.

Следовательно:

Qк = 150 × 10-3 /(3 × 102× 8 × 15 × 10-6) = 16.7°C

Внутренний перегрев областей p-n переходов транзистора КТ359А относительно подложки определяется по формуле:

Qвн = Rt вн× Pэ,

где Pэ - рассеиваемая мощность транзистора;

RTвн - внутреннее тепловое сопротивление, зависящее от конструктивного исполнения.

Для транзистора КТ359А RTвн= 860°С/Вт, Pэ=15мВт.

Следовательно:

Qвн= 860 × 15 × 10-3 = 12.9°C

Перегрев элементов за счет рассеиваемой мощности PЭ вычисляется по формуле:

Qэ = Pэ× RT,

где Pэ - рассеиваемая можность элемента;

Rт - внутреннее тепловое сопротивление микросхемы:

RТ= [(hп/lп) + (hк/lк)]×[1/(B×L)],

где hп = 0.6мм - толщина подложки;

hк = 0.1мм - толщина клея.

lп = 1.5 Вт/м с - коэффициент теплопроводности материала подложки;

lк= 0.3 Вт/м с - коэффициент теплопроводности клея;

B,L - размеры контакта тепловыделяющего элемента с подложкой;

Расчет перегрева всех элементов и компонентов за счет рассеиваемой мощности представлен в таблице 5.

Таблица 5

Результаты расчета перегрева элементов и компонентов интегральной микросхемы К2ТС241 (RST-триггер)

Расчетные значения Элементы и компоненты
КТ359А R1(R7) R2(R5) R3(R8,R9) R4
длина L, мм 0.75 0.49 0.49 0.2 0.64
ширина B, мм 0.75 0.2 0.2 0.2 0.2
Расс. мощность,Вт 15 × 10-3 90 × 10-3 10 × 10-3 5 × 10-3 10 × 10-3
RT, °C/Вт 1.3 7.5 7.5 18.25 5.7
Qэ, °C 0.0195 0.675 0.075 0.09 0.057

Максимальная допустимая рабочая температура всех материалов резистивной пленки составляет 125°С.

Максимальная рабочая температура транзистора КТ359А составляет 85°C.

TКТ359А= 55 + 16.7 + 0.0195 + 12.9 = 84.6°C < 85°C

TR1(R7) = 55 + 16.7 + 0.675 = 72.3°C < 125°C

TR2(R5) = 55 + 16.7 + 0.075 = 71.78°C < 125°C

TR3(R8,R9) = 55 + 16.7 + 0.09 = 71.79°C < 125°C

TR4 = 55 + 16.7 + 0.057 = 71.8°C < 125°C

Расчет показал, что для данной схемы обеспечивается допустимый тепловой режим, так как температура самого теплонагруженного элемента (транзистор КТ359А) не превышает максимально допустимой.

ВЫВОДЫ

В ходе курсового проектирования были выбраны: технология получения тонких пленок, тонкопленочных элементов, материал подложки, тонкопленочных резисторов, конденсаторов, проводников и контактных площадок, защиты, метод получения конфигурации, навесные компоненты, корпус.

Была разработана схема соединений, проведен расчет пленочных резисторов, конденсаторов, площади подложки, разработана и вычерчена топология.

СПИСОК ЛИТЕРАТУРЫ

1. И.Е. Ефимов, И.Я. Козырь, Ю.И. ГорбуновМикроэлектроника.- М.: «Высшая школа»,

1986.

2. И.А. Малышева Технология производства интегральных микросхем.- М.: Радио и связь,

1991.

3. И.Н. БукреевБ.М. Мансуров В.И. Горячев Микроэлектронные схемы цифровых

устройств.-М.: «Советское радио»,1975.

4. Д.В. Игумнов, Г.В. Королев, И.С. Громов «Основы мкроэлектроники».- М.:«Высшая

школа»,1991.

5. Л.А. Коледов Конструирование и технология микросхем.- М.: «Высшая школа», 1984.

6. И.Е. Ефимов, И.Я. Козырь, Ю.И. Горбунов Микроэлектроника.- М.: «Высшаяшкола»,

1987.

7. Н.Н. Калинин, Г.Л. Скибинский, П.П. Новиков Электрорадиоматериалы.- М.: «Высшая школа», 1981.

8. А.Б. Ломов, Проектирование гибридных интегральных микросхем. - М.: «МКИП», 1997.