Пример разработки экспертной системы гарантирования (страхования) коммерческих займов CLUES (loan-uderwriting expert systems) [ 21 ] представлен в таблице 2.3. Эта система создавалась в интегрированной среде ART группой разработчиков в составе одного менеджера проекта, двух инженеров по знаниям, двух программистов, ответственных за сопряжение ЭС с существующей информационной системой и аналитическим инструментом, одного контролера качества. Сложность созданной системы: 1000 правил, 180 функций, 120 объектов. Эффективность: при оценке 8500 кредитов в месяц годовая экономия на обработке информации составляет 0,91 млн. долл., при 30000 кредитов - 2,7 млн. долл. При этом в 50% случаев система принимает самостоятельные решения, в остальных случаях дает экспертам диагностику возникающих проблем. Время оценки кредита сократилось с 50 минут до 10-15 минут. Перечисленные показатели эффективности позволили компании Contrywide расширить сферу своей деятельности во всех штатах США и увеличить оборот с 1 млрд. долл. в месяц в 1991 году до 5 млрд. долл. в 1993 году.
2.2. Идентификация проблемной области
Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.
Начало работ по созданию экспертной системы инициируют руководители компаний (предприятий, учреждений). Обычно необходимость разработки экспертной системы в той или иной сфере деятельности связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Эти затруднения могут быть обусловлены недостаточным опытом работы в данной области, сложностью постоянного привлечения экспертов, нехваткой трудовых ресурсов для решения простых интеллектуальных задач, необходимостью интеграции разнообразных источников знаний. Как правило, назначение экспертной системы связано с одной из следующих областей:
· обучение и консультация неопытных пользователей;
· распространение и использование уникального опыта экспертов;
· автоматизация работы экспертов по принятию решений ;
· оптимизация решения проблем, выдвижение и проверка гипотез.
Таблица 2.3.
Период времени | Этап |
Ноябрь 1991г. | Постановка проблемы |
Январь 1992г. | Создание отдела ЭС |
Февраль - апрель 1992г. | Интервьюирование экспертов |
Апрель - май 1992г. | Моделирование и создание первого прототипа |
Май - июнь 1992г. | Кодирование (реализация) |
Июнь - сентябрь 1992г. | Внутреннее тестирование. Системная интеграция |
Сентябрь - декабрь 1992г. | Альфа-тестирование на известных примерах |
Декабрь - январь 1993г. | Бета-тестирование на реальных примерах |
Февраль 1993г. | Внедрение в отрасли розничной торговли (20% кредитов) |
Май 1993г. | Внедрение в потребительский сектор (10% кредитов) |
Август 1993г. | Внедрение в отрасли оптовой торговли (35% кредитов) |
Февраль 1994г. | Внедрение в корреспондентскую сеть (35% кредитов) |
Сфера применения экспертной системы характеризует тот круг задач, который подлежит формализации, например, "оценка финансового состояния предприятия", "выбор поставщика продукции", "формирование маркетинговой стратегии" и т.д. Обычно сложность решаемых в экспертной системе проблем должна соответствовать трудоемкости работы эксперта в течение нескольких часов. Более сложные задачи имеет смысл разбивать на совокупности взаимосвязанных задач, которые подлежат разработке в рамках нескольких экспертных систем.
Ограничивающими факторами на разработку экспертной системы выступают отводимые сроки, финансовые ресурсы и программно-техническая среда. От этих ограничений зависит количественный и качественный состав групп инженеров по знаниям и экспертов, глубина прорабатываемых вопросов, адекватность и эффективность решения проблем. Обычно различают три стратегии разработки экспертных систем (таблица 2.4) [18, 20]:
· широкий набор задач, каждая из которых ориентирована на узкую проблемную область;
· концентрированный набор задач, определяющий основные направления повышения эффективности функционирования экономического объекта;
· комплексный набор задач, определяющий организацию всей деятельности экономического объекта.
После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:
· класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);
· критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);
· критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);
· цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);
· подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);
· исходные данные (совокупность используемых факторов);
· особенности используемых знаний (детерминированность/ неопределенность, статичность/динамичность, одноцелевая/ многоцелевая направленность, единственность/множественность источников знаний).
Стратегии разработки экспертных систем
Таблица 2.4.
Широкий набор задач | Концентрированный набор задач | Комплексныйнабор задач | |
Назначение | Автоматизация | Стандартизация,повышение качества | Реорганизациябизнес-процессов |
Требования к разработчикам | Эксперты-пользователи | Профессиональные команды | Междисциплинарные команды |
Стоимость | Низкая на проект | Высокая на проект | Высокая на проект |
Риск | Диверсифицированный | Концентрированный | Концентрированный |
Примеры | DuPont du NemoursОболочка Insight PlusСотни экспертных систем. Сотни правил в каждой ЭС | DEC, ЭС конфигурирования компьютеров XCON, продажи XSEL17000 правил, эффект 27 млн. долл. | XeroxСреда разработки информационной системыART-Enterprise (Inferenсe)Интеллект. моделированиеReThink (Gensym) |
2.3. Построение концептуальной модели
На этапе построения концептуальной модели создается целостное и системное описание используемых знаний, отражающее сущность функционирования проблемной области. От качества построения концептуальной модели проблемной области во многом зависит насколько часто в дальнейшем по мере развития проекта будет выполняться перепроектирование базы знаний. Хорошая концептуальная модель может только уточняться (детализироваться или упрощаться), но не перестраиваться.
Результат концептуализации проблемной области обычно фиксируется в виде наглядных графических схем на объектном, функциональном и поведенческом уровнях моделирования:
· объектная модель описывает структуру предметной области как совокупности взаимосвязанных объектов;
· функциональная модель отражает действия и преобразования над объектами;
· поведенческая модель рассматривает взаимодействия объектов во временном аспекте.
Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а следовательно, и ориентированные на них методы представления знаний. Рассмотрим каждую из представленных видов моделей.
Объектная модель отражает фактуальное знание о составе объектов, их свойств и связей. Элементарной единицей структурного знания является факт, описывающий одно свойство или одну связь объекта, который представляется в виде триплета:
предикат (Объект, Значение).
Если предикат определяет название свойства объекта, то в качестве значения выступает конкретное значение этого свойства, например:
профессия ("Иванов", "Инженер").
Если предикат определяет название связи объекта, то значению соответствует объект, с которым связан первый объект, например:
Работает ("Иванов", "Механический цех" ).