Смекни!
smekni.com

Исследование алгоритма SSA-метода при анализе временных последовательностей данных с шумом по известному (стр. 1 из 8)

Министерство образования Республики Беларусь

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное учреждение высшего профессионального образования

БЕЛОРУССКО–РОССИЙСКИЙ УНИВЕРСИТЕТ

Кафедра «Автоматизированные системы управления»

Курсовая работа на тему:

«Исследование алгоритма SSA-метода при анализе временных последовательностей данных с шумом по известному закону распределения»

по дисциплине

«Математическая логика и теория алгоритмов»

051.23 02 01.081446.23.81-01

2010


Задание на курсовую работу по дисциплине «Математическая логика и теория алгоритмов»

1 Тема работы: Исследование алгоритма SSA-метода при анализе временных последовательностей данных с шумом по известному закону распределения.

2 Срок сдачи студентом законченной работы ‑ 25.05.2010 г.

3 Исходные данные для работы: 1) Технология исследования SSA-метода с использованием пакетов MS Excel, Mathcad, Statistica. 2) Алгоритм генерации временной последовательности данных по заданному закону распределения:

Pearson Type V Rayleigh

Постановка задачи. Исследовать свойства SSA-метода при декомпозиции временной последовательности данных на трендовую, гармоническую и шумовую составляющие. Оценить погрешность SSA-метода при декомпозиции временной последовательности данных для разных значений тренда, гармоники и шума. Восстановление шумовой составляющей оценить по критериям хи-квадрат Пирсона, лямбда Колмогорова, омега-квадрат Мизеса.

4 Содержание расчётно-пояснительной записки.

Титульный лист.

Задание на курсовую работу. Аннотация.

Содержание. Перечень условных обозначений. Введение. 1 Анализ и теоретическое исследование алгоритма. 2 Разработка технологии экспериментального исследования алгоритма. 3 Описание разработанного программного обеспечения. 4 Экспериментальное исследование алгоритма. Заключение. Список использованных источников. Приложение.

5. Дата выдачи задания 22.02.2010 г.

6. Научный консультант: канд. техн. наук, доц. Альховик С. А.

7. Календарный график работы на весь период проектирования.


Оглавление

Введение

1. Распределение Pearson Type V

1.1 Формализованное описание закона Pearson Type V

1.2 Примеры использования закона распределения Pearson Type V

1.3 Числовые характеристики закона распределения Pearson Type V

1.4 Получение выборки с распределением Pearson Type V

1.5 Формулировка гипотезы о законе распределения Pearson Type V

1.6 Проверка гипотезы о законе распределения Pearson Type V

1.7 Программа для проверки гипотезы о законе распределения

2. Распределение Rayleigh

2.1 Формализованное описание закона Rayleigh

2.2 Примеры использования закона распределения Rayleigh

2.3 Числовые характеристики закона распределения Rayleigh

2.4 Получение выборки с распределением Rayleigh

2.5 Формулировка гипотезы о законе распределения Rayleigh

2.6 Проверка гипотезы о законе распределения Rayleigh

2.7 Программа для проверки гипотезы о законе распределения

3. SSA-метод

3.1 Определение собственных чисел матрицы

3.2 Содержательное описание SSA-метода

3.3 Методика исследования SSA-метода на основе информационных технологий

4. Исследование временных рядов с шумом заданным Pearson Type V

4.1 Постановка эксперимента

4.2 Экспериментальная часть (тренд)

4.3 Экспериментальная часть (гармонический ряд)

4.4 Экспериментальная часть (рандом)

4.5 Результаты и их обсуждение

5. Исследование временных рядов с шумом заданным Rayleigh

5.1 Постановка эксперимента

5.2 Экспериментальная часть (тренд)

5.3 Экспериментальная часть (гармонический ряд)

5.4 Экспериментальная часть (рандом)

5.5 Результаты и их обсуждение

6. Экспериментальное исследование средней трудоемкости Pirson Type V

7. Экспериментальное исследование средней трудоемкости Rayleigh

Заключение

Список использованных источников


Введение

В процессе интеллектуального анализа данных (ИАД) центральное место занимает автоматическое порождение характеризующих анализируемые данные моделей, правил и/или функциональных зависимостей. В целом процесс извлечения знаний в ИАД условно делят на следующие этапы, которые в совокупности предложено использовать на этапе эксплуатации имитационной модели (ИМ) сложного объекта.

Шаг 1. Отбор данных: анализ задач пользователя, выбор целевого множества данных, определение переменных.

Шаг 2. Предобработка данных: устранение зашумленности, обработка пропущенных значений, итоговые показатели по группам данных.

Шаг 3. Редукция и проекция данных: ищутся полезные особенности данных для решения поставленных задач, сокращается пространство переменных.

Шаг 4. Поиск закономерностей: выбор метода поиска закономерностей с учетом объема и типа данных, их зашумленности и осуществление поиска закономерностей.

Шаг 5: Оценка и интерпретация найденных закономерностей: оценка и упорядочение закономерностей по их релевантности, проверка согласованности предыдущих и вновь найденных знаний. Возможно возвращение к любому шагу от 1 до 4 для дальнейших итераций.

Шаг 6. Использование найденных знаний: прямое использование, передача заинтересованным лицам, включение в интеллектуальные системы, основанные на знаниях.

Для разработки технологии извлечения знаний из временных последовательностей данных исследован сингулярный спектральный метод (SSA-метод), включающий этапы вложения, сингулярного разложения, группировки, диагонального усреднения. Исследуем Pearson Type V и Rayleigh законы распределения.


1. Распределение Pearson Type V

1.1 Формализованное описание закона Pearson Type V распределения случайной величины

Плотность вероятности

если x>0;

в противном случае

Функция распределения

если x>0;

где

функция распределения случайной величины с распределением gamma(
,1/
)

График функции плотностей распределения вероятностей PT5(α,1) представлен на рисунке 1.1.

Рисунок 1.1. Функции плотностей распределения вероятностей PT5(α,1)


1.2 Примеры использования закона распределения Pearson Type V

Варианты применения: Время выполнения какой-либо задачи (График функции плотности принимает форму, подобную форме графика плотности логнормального распределения, но может иметь большой острый “выступ” ближе к х=0)

1.3 Числовые характеристики закона распределения Pearson Type V

Параметр формы α > 0, масштабный параметр β > 0

Область[0,∞)

Среднее

для α > 1

Дисперсия

для α > 2

Мода

Оценка максимального правдоподобия

При наличии данных Х1, Х2, …, Хn подборка распределения gamma(

,
) к 1/Х1, 1/Х2, …, 1/Хn, в результате дает оценки по методу максимального правдоподобия
и
. Оценки максимального правдоподобия для PT5(α,β) составляют
=
и
=

Примечания1. Тогда и только тогда X~ PT5(α,β), когда Y=1/X~gamma(

,1/
). Поэтому распределение Пирсона типа V называют обращенным гамма - распределением.

2. Заметьте, среднее и дисперсия существуют только для определенных значений параметров формы.

1.4 Получение выборки с распределением Pearson Type V

Текст программы на C++

//kursml.cpp : main project file.

#include "stdafx.h"

#include "Pearson5.h"

using namespace System;

using namespace Variates;

using namespace System::IO;

int main(array<System::String ^> ^args)

{

TextWriter ^tr = File::CreateText(L"numbers.txt");

for(int i=0;i<100;i++)

{

tr->WriteLine((Pearson5::Sample(1,1).ToString());

}

tr->Close();

return 0;

}

Pearson5.h

#pragma once

#include "Rng.h"

#include "Gamma.h"

using namespace System;

namespace Variates

{

public ref class Pearson5 : public Rng

{

private:

double m_alpha;

double m_beta;

public:

Pearson5(double alpha, double beta) : m_alpha(alpha), m_beta(beta)

{}

virtual double Sample() override

{

return Sample(m_alpha, m_beta);

}

static double Sample(double alpha, double beta)

{

return 1 / Gamma::Sample(alpha, 1 / beta);

}

//FG(x) функция распределения случайной велечины с распределением GAMMA(gamma,1/beta)

virtual double DistributionFunction(double x) override

{return Pearson5::DistributionFunction(x, m_alpha, m_beta);}