Смекни!
smekni.com

Моделирование системы заданной конфигурации (стр. 1 из 7)

Министерство образования Республики Беларусь

Брестский государственный технический университет

Кафедра ИИТ

Пояснительная записка

к курсовой работе

по дисциплине Моделирование систем

Моделирование системы заданной конфигурации

Выполнил:

Студент 4 курса ФЭИС

группы АСОИ-552

Мелех Н.Н.

Брест 2009


СОДЕРЖАНИЕ

Введение

1.Построение концептуальной модели (км)

2. Разработка математической модели

3. Разработка gpss-ориентированной имитационноймодели

4. Разработка, реализация и исследование упрощенных моделей

5. Реализация и исследование имитационной модели

6. Исследование свойств системы

заключение

литература


ВВЕДЕНИЕ

Задан объект моделирования - некая система, назначение которой – выполнение некоторых действий над поступающими заданиями из одного модуля и передача обработанного результата в другой модуль. Структура эти двух модулей нас не интересует, и мы будем рассматривать их в дальнейшем как «черные» ящики, один из которых посылает в систему задания с интенсивностью l, т.е. является генератором, а другой - принимает обработанные задания, т.е. является приемником.

Цели исследования системы заключаются в следующем:

· выявить «узкие» места системы;

· для известной интенсивности поступления заданий в систему подобрать такие ее параметры, чтобы обеспечивалась оптимальная загрузка всех устройств;

· определить влияние производительности каждого элемента системы на ее общую производительность;

· спрогнозировать реакцию системы при изменении интенсивности поступления заданий на обслуживание.

Анализ этих характеристик позволяет выбрать оптимальные параметры системы (производительность всех устройств) и таким образом решить очень важную задачу: спроектировать систему с минимальными финансовыми затратами.

Для исследования системы всегда строится ее модель и производится моделирование. Модели можно разделить на несколько категорий:

- наглядные;

- символические;

- математические.

Наглядные и символические модели применяются на начальных стадиях моделирования, когда идет сбор информации об объекте моделирования. Математическая модель применяется, когда объект моделирования описывается с помощью математического аппарата.


1. ПОСТРОЕНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ ( КМ )

Требуется разработать и исследовать модели системы. Тип модели - Q-схема. Модели транзактные. Способы расчета - имитационный (в среде GPSSWorld на языке GPSS) и аналитический.

Система состоит из устройств S1-S3, памяти S5 и S6.

Внешняя среда представлена источником запросов (узел S0), приемником обслуженных запросов (узел S4).

Число типов потоков запросов Q – 2 (50% заявок первого и 50% второго типа). Потоки различаются параметрами законов поступления и обслуживания. Законы поступления запросов 1 и 2 типов соответственно – Эрланга и равномерный. Законы обслуживания 1 и 2 типов соответственно – равномерные.

При появлении запроса ему выделяется место в памяти S5, при нехватке в памяти S6 и далее начинается обслуживание в S1. Иначе происходит отказ в обслуживании. Освобождается память по завершении обслуживания в системе. Потребность в памяти запросов 1 и 2 типа описывается разными дискретными равномерными законами (от 1 до x единиц).

Порядок движения запросов в процессе обслуживания представлен матрицей переходов P (где число – вероятность выбора маршрута) (таблица 1.1).

Таблица 1.1- Исходнаяматрицапереходов P

S0 S1 S2 S3 S4
S0 1
S1 1
S2 0,5 0,5
S3 1
S4 1

Параметры устройств и параметров потоков запросов (заявок) указаны в таблице 2.

Таблица 1.2- Параметры системы

ПОТОКИ УСТРОЙСТВА
% mt K mt K mt K mt K mt K mt
21 1 4 2 1 3 1
1 50% 240,0 296,0 36,0 52,0
2 50% 240,0 296,0 36,0 52,0

Маршруты движения потоков здесь совпадают, поэтому вначале разрабатываем общую схему Q-модели.

Для этого анализируем матрицу Р. Полученные результаты наносим на схему (рисунок 1, 2).

Рисунок 1.1- Ресурсы системы.

Рисунок 1.2- Общая (исходная) схема Q-модели.

Основные обслуживающие ресурсы системы – устройства, памяти, накопители и т.д.

Для заданной системы.

Здесь ресурсы: - устройства S1, S2, S3 , память S5,S6.

Состав узлов:

S0 - источник запросов (генератор);

S1- устройство с обслуживанием в одном из 4 -х каналов;

S5-6,1, - узел выделения памяти S5 или S6 (анализ наличия и выделение). Потребность в памяти запросов 1 и 2 типа описывается разными дискретными равномерными законами (от 1 до x единиц). S3- устройство с обслуживанием в одном из 2-х каналов;

S2, S3 - устройство с обслуживанием в одном канале;

S5-6,2 - узел (фаза) освобождения ранее занятой емкости памяти S5 или S6;

S4 – приемник обслуженных запросов;

Параметры обслуживающих узлов представлены ниже в таблице 1.3.

Таблица 1.3.- Параметры обслуживающих узлов

Узел Параметры Значение
S1 z1,1 – тип узла устройство
z1,2 – канальность K1 4
z1,3 – быстродействие канала B1 1
z1,4 – дисциплина обслуживания FIFO*
Примечание: основные фазы - захват одного свободного канала S1,1; обслуживание с постоянной скоростью B S1,2; - освобождение канала S1,3
S2 z2,1 – тип узла устройство
z2,2 – канальность K4 1
z2,3 – быстродействие канала B4 1
z2,4 – дисциплина обслуживания FIFO*
Примечание: основные фазы - захват одного свободного канала S2,1; обслуживание с постоянной скоростью B S2,2; - освобождение канала S2,3
S3 z3,1 – тип узла устройство
z3,2 – канальность K3 1
z3,3 – быстродействие канала B3 1
z3,4 – дисциплина обслуживания FIFO*
Примечание: основные фазы - захват одного свободного канала S3,1; обслуживание с постоянной скоростью B S3,2; - освобождение канала S3,3
S5 z5,1 – тип узла память
z5,2 – емкость V2 12**
z5,3 – дисциплина обслуживания FIFO*
Примечание: основные фазы - захват необходимой свободной части памяти S5,1; S5,2 - освобождение памяти
S6 z6,1 – тип узла память
Z6,2 – емкость V2 7**
Z6,2 – дисциплина обслуживания FIFO*
Примечание: основные фазы - захват необходимой свободной части памяти S6,1; S6,2 - освобождение памяти

В системе по условию обрабатывается два потока заявок с похожими маршрутами обработки, движения, но с разными законами, параметрами поступления и обслуживания. Обозначим потоки номерами – 1 и 2. Тогда множество потоков Q = {1; 2}. Мощность множества Q = 2.

Потоки отличаются вероятностным характером, стационарны. Соответственно для каждого потока надо определить, конкретизировать следующие законы (распределения):

1. Законы поступления транзактов 1и 2 типов соответственно – Эрланга и равномерный.

где:

λ– интенсивность поступления заданий для каждого из двух потоков.

λ(1) =0,004;

Равномерный:

Распределение задается двумя параметрами: a – левая граница, b – правая граница (b > a).

2. закон обслуживания транзактов 1и 2 типов равномерные;

0, t<a

S(1)(t)= , a ≤t≤b

1, t>b,

Уточняем схему модели

В моделируемой системе (см. рисунок 1.2):

- после узла S0 нужен добавочный узел S7 анализа наличия свободной емкости памяти S5 для пришедшей заявки и выбора дальнейшего маршрута движения запроса – в память на узелS5,1 .

- соответственно необходим узел S8 анализа наличия свободной емкости памяти S6 для пришедшей заявки и выбора дальнейшего маршрута движения запроса – в память на узелS6,1 или в приемник отказанных заявок.

- соответственно необходим узелS9 - приемник заявок, не вошедших в систему из-за нехватки памяти;