Смекни!
smekni.com

Задача линейного программирования (стр. 3 из 3)

Z(X) =

)

4 2 10 1 0 420

6 2 8 0 0 120 * (-1)

4 2 18 0 -1 250

28 24 20 0 0 0

4 2 10 1 0 420

-6 -2 -8 0 0 -120 + +

4 2 18 0 -1 250

28 24 20 0 0 0


-2 0 2 1 0 420

6 2 8 0 0 120 *12

-2 0 10 0 -1 130

28 24 20 0 0 0

-2 0 2 1 0 300

72 24 96 0 0 1440 -

-2 0 10 0 -1 130

28 24 20 0 0 0

-2 0 2 1 0 300

72 24 96 0 0 1440

-2 0 10 0 -1 130

-44 0 -76 0 0 -1440

-2 0 2 1 0 300 *5

3 1 4 0 0 60

-2 0 10 0 -1 130 * (-1)

-44 0 -76 0 0 -1440


-10 0 10 5 0 1500

3 1 4 0 0 60

2 0 -10 0 1 -130 +

-44 0 -76 0 0 -1440

-10 0 10 5 0 1500

3 1 4 0 0 60

12 0 0 5 1 1370

-44 0 -76 0 0 -1440

-2 0 2 1 0 300 -

3 1 4 0 0 60

2,4 0 0 1 1 274

-44 0 -76 0 0 -1440

-4,4 0 2 0 -1 26 *2

3 1 4 0 0 60

2,4 0 0 1 1 274

-44 0 -76 0 0 -1440

-8,8 0 4 0 -2 52

3 1 4 0 0 60 -

2,4 0 0 1 1 274

-44 0 -76 0 0 -1440

-8,8 0 4 0 -2 52 *19

11,8 1 0 0 2 8

2,4 0 0 1 1 274

-44 0 -76 0 0 -1440

-167,2 0 76 0 -38 988

11,8 1 0 0 2 8

2,4 0 0 1 1 274

-44 0 -76 0 0 -1440 +

-167,2 0 76 0 -38 988

11,8 1 0 0 2 8

2,4 0 0 1 1 274

-123,2 0 0 0 -38 -452

-2,2 0 1 0 -0,5 13

11,8 1 0 0 2 8

2,4 0 0 1 1 274

-123,2 0 0 0 -38 -452

§ 5 Решение задачи

Составляем симплексную таблицу

Симплексная таблица 1

Б
-452 -123,2 0 0 0 -38
0 13 -2,2 1 0 0 -0,5
0 8 11,8 1 0 0 2
0 274 2,4 0 0 1 1
452 123,2 0 0 0 38

т. к все

> 0 решение оптимальное

Ответ: max Z(X) = 452 при X = (0; 8; 13)

§ 6 Вывод

Максимальная прибыль в размере 425 тыс. руб. может быть достигнута, если производить 8 станков ІΙ вида, 13 станков ІΙІ вида и не производить станки Ι вида.

При этом расходуется 146 ед. сырья, 120 ед. трудовых ресурсов и 250 ед. накладных расходов.


Заключение

Данная курсовая работа посвящена вопросу о решении задачи линейного программирования методом последовательного улучшения плана, иначе симплекс – метод. Состоит из введения, двух глав, заключения и списка литературы.

В первой главе рассказывается о линейном программировании в частности, и о том, что такое общая постановка задачи линейного программирования, как составить математическую модель, а также рассказано о канонической форме задач линейного программирования.

Вторая глава работы посвящена практической части решения задачи. Строится математическая модель, решается задача симплексным методом, а также методом Гаусса.