Смекни!
smekni.com

Представление знаний в интеллектуальных информационных системах (стр. 2 из 3)

· рекурсивная структуризуемость означает возможность произвольного установления между отдельными информационными единицами отношений типа “часть-целое”, “род-вид” или “элемент-класс”. Иными словами, должна быть обеспечена рекурсивная вложимость одних информационных единиц в другие;

· взаимосвязь единиц - предполагает возможность установления связей различного типа между информационными единицами. Прежде всего эти связи могут характеризовать отношения между информационными единицами. Семантика отношений может носить декларативный (задание иерархии информационных единиц, причинно-следственных связей) или процедурный (отношение “аргумент-функция”) характер. Отношения структуризации определяют иерархические связи.

· наличиесемантического пространства с метрикой. В некоторых случаях на множестве информационных единиц полезно задавать отношение, характеризующее ситуационную близость информационных единиц (силу ассоциативной связи между ними)–отношение релевантности. При работе с информационными единицами отношение релевантности (введение семантической меры) позволяет находить знания, близкие к уже найденным, находить в информационной базе типовые ситуации (купля-продажа, аренда, заем).

· активность. Поскольку актуализации тех или иных действий в интеллектуальной системе способствуют именно знания, имеющиеся в системе, а выполнение программ должно инициироваться текущим состоянием информационной базы, то отличительной особенностью знаний является активность не только процедурной, но и декларативной составляющей.

Перечисленные пять особенностей знаний как таковых позволяют определить грань, за которой данные превращаются в знания, а БД –в Базы Знаний. Систему управления базой знаний образует совокупность средств, обеспечивающих работу со знаниями.

В ЭВМ знания так же, как и данные, отображаются в знаковой форме - в виде формул, текста, файлов, информационных массивов и т.п. Поэтому можно сказать, что знания - это особым образом организованные данные.

С точки зрения инженерии знаний определение понятия «знание» и его отличие от данных необходимо увязать с логическим выводом (обобщенная процедура поиска решения задачи, которая на основе базы знаний и в соответствии с информационной потребностью пользователя строит цепочку рассуждений, приводящую к конкретному результату).

Знания – это формализованная информация, которую непосредственно используют в процессе логического вывода, на которой стоят те или иные умозаключения. На основании знаний путем логических рассуждений можно вывести новые знания, тогда как данные такими свойствами не обладают.

3. ПРЕДСТАВЛЕНИЕ ЗНАНИЙ В ИИС

Модели представления знаний – это одно из важнейших направлений исследований в области искусственного интеллекта. Почему одно из важнейших? Да потому, что без знаний искусственный интеллект не может существовать в принципе. Действительно, представьте себе человека, который абсолютно ничего не знает. Например, он не знает даже таких элементарных вещей как:

  • для того, чтобы не умереть от голода, необходимо периодически есть;
  • необязательно из одного края города в другой идти пешком, если для этих целей можно воспользоваться общественным транспортом.

Таких примеров удастся привести еще много, но уже сейчас можно легко ответить на следующий вопрос: «Поведение такого человека может считаться разумным?». Конечно же, нет. Именно поэтому, при создании систем искусственного интеллекта особенное внимание уделяется моделям представления знаний.

На сегодняшний день разработано уже достаточное количество моделей. Каждая из них обладает своими плюсами и минусами, и поэтому для каждой конкретной задачи необходимо выбрать именно свою модель. От этого будет зависит не столько эффективность выполнения поставленной задачи, сколько возможность ее решения вообще.

Отметим, что модели представления знаний относятся к прагматическому направлению исследований в области искусственного интеллекта. Это направление основано на предположении о том, что мыслительная деятельность человека – «черный ящик». При таком подходе не ставится вопрос об адекватности используемых в компьютере моделей представления знаний тем моделям, которыми пользуется в аналогичных ситуациях человек, а рассматривается лишь конечный результат решения конкретных задач.

Модели представления знаний:

1. модели, ориентированные на правила

· логическая модель

· продукционная модель

2. модели, ориентированные на объекты

· сетевая модель (семантическая сеть)

· фреймовая модель

· объектно-ориентированная модель

3.1 Логические модели

В основе логической модели лежит формальная система, задаваемая четверкой вида: M=<T, P, A, B>.

Здесь T есть множество базовых элементов(пример –множество элементов терминального словаря). Причем существует некоторая процедура П(T), которая за конечное число шагов дает ответ на вопрос о принадлежности произвольного элемента к множеству T.

P–множество синтаксических правил. С их помощью из элементов множества T образуются синтаксически правильные совокупности. Декларируется существование процедуры П(P), с помощью которой за конечное число шагов можно ответить на вопрос, является ли совокупность X={x}синтаксически правильной.

A–множество аксиом, является подмножеством множества синтаксически правильных совокупностей вида{x}. Процедура П(A) позволяет для любой синтаксически правильной совокупности получить вопрос о принадлежности ее к множеству A. Применительно к БЗ множество A составляют введенные из вне информационные единицы.

B–множество правил вывода. Применяя их к элементам из A, можно получать новые синтаксически правильные совокупности, к которым снова можно применять правила из B. С помощью B формируется множество выводимых совокупностей. Если имеется процедура П(B), которая позволяет определить выводимость любой синтаксически правильной совокупности, то соответствующая формальная система называется разрешимой.

3.2 Продукционные модели.

В моделях этого типа используются элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода –продукций. Из сетевых моделей – представление знаний в виде семантической сети.

Продукционные системы: с прямым и обратным выводом. В системе продукций с обратными выводами с помощью правил строится дерево “И/ИЛИ”, связывающее в единое целое факты (посылки) и доказываемое (опровергаемое) утверждение; оценка этого дерева на основании фактов, имеющихся в базе данных, и есть логический вывод. Оценка заключается в том, что необходимо найти ту посылку, наличие или отсутствие которой в наибольшей степени подтвердит или опровергнет рассматриваемое утверждение. Прямой вывод: известна посылка, нужно получить результат.

Основополагающими являются системы продукций с прямыми выводами. Состоят из Базы Правил (БП), включающей набор продукций (правил вывода), Базы Данных (БД), в которой содержится множество фактов и интерпретатора для получения логического вывода. БД и БП составляют базу знаний, а интерпретатор соответствует механизму логического вывода.

В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов.

Особенность: явное выделение процедурной информации, различие в средствах описания декларативной и процедурной информации. Вместо логического вывода, характерного для логических моделей, используется вывод на знаниях.

Достоинства продукционной модели.

—Простота создания и понимания отдельных правил;

—Простота пополнения и модификации;

—Простота механизма логического вывода.

Недостатки:

—Отсутствие возможности описания взаимных отношений правил;

—Сложность анализа целостного образа знаний;

—Несоответствие структуры знаний системы структуре знаний человека. В частности, структура базы знаний продукционной системы не позволяет описывать метазнания и свойственную человеческому мышлению нечеткую логику.

3.3. Сетевые модели

Сетевая модель формально задается системой составляющих вида :

H=<I, C1, C2, … , Cn, Г>.

Здесь I есть множество информационных единиц, C1, C2, … , Cn – множество типов связей между информационными единицами. Г есть отображение, которое задает связи из набора C1, C2, … ,Cn между входящими в множество I информационными единицами.

В зависимости от типов связей из множества C1, C2, … ,Cn различают классифицирующие сети, функциональные сети и сценарии.

В классифицирующих сетях используются отношения структуризации, которые позволяют описывать различные виды иерархий между информационными единицами.

Функциональные сети (вычислительные модели) характеризуются наличием функциональных отношений, которые позволяют описывать процедуры “вычислений”одних информационных единиц через другие.

Сценарии характеризуются использованием в качестве C1, C2, … ,Cn каузальных отношений, а также отношений типов “средство-результат”, “орудие-действие”и т.п.

Определение. Семантической сетью сетевая модель, в которой в качестве C1, C2, … ,Cn допускаются связи различного типа.

3.4 Фреймовая модель.

Основана на фреймовой теории, предложенной М.Минским в 1974 г. представляет собой систематизированную в виде единой теории психологическую модель памяти человека и его сознания.