7. Структура сучасного відео адаптера
Структурна схема сучасного відеоадаптера наведена на рисунку 12.
Рисунок 12 – Структурна схема відео плати
Відеоадаптери EGA і VGA умовно поділяються на декілька логічних блоків опис яких приведені нижче
Відеопам'ять. У відеопам'яті розміщаються дані, що відображаються адаптером на екрані дисплея. Для EGA і VGA ідеопам'ять звичайно має обсяг 256 Кбайт, на деяких моделях SVGA і XGA обсяг відеопам'яті може бути збільшений. Відеопам'ять знаходиться в адресному просторі процесора і програми можуть безпосередньо робити з нею обмін даними. Фізично відеопам'ять розділена на чотири зони, чи колірні шари, що використовують спільний адресний простір
Відеопроцесор. За допомогою його відбувається обмін даними між інтерфейсом і відеопамяттю. Апаратура відеопроцесора дозволяє обробляти дані що надходять у відеопам'ять
ЦАП. Вибирає з відеопам'яті один чи декілька байт, перетворює їх у аналоговий сигнал, потім передає монітору.
Схема синхронізації і управління керує всіма параметрами відеоадаптера. Синхронізатор також керує доступом процесора до колірних шарів відеоадаптера.
Відеопам'ять адаптерів EGA і VGA розділена на чотири зони, або на чотири колірних шари. Ці зони розміщаються в одному адресному просторі таким чином що по кожній адресі розташовано чотири байти (по одному байті в кожнім банку). Яка з зон пам'яті використовується для запису, чи читання даних процесором, визначається за допомогою регістрів адаптера.
Так як всі чотири зони знаходяться в одному адресному просторі, то процесор може робити запис в усі чотири зони за один цикл запис. Завдяки цьому деякі операції, наприклад заповнення екрана, відбуваються з більшою швидкістю У цьому випадку, коли запис в усі чотири зони не потрібно, можна дозволяти чи забороняти запис за допомогою регістра дозволу запису колірного шару. Для операції читання в кожен момент часу може бути дозволений за допомогою регістра вибору колірного шару, тільки один колірний шар.
У більшості режимів відеоадаптера відеопам'ять розділена на кілька сторінок При цьому одна з них є активною і відображається на екрані. За допомогою функцій BIOS чи програмування регістрів відеоадаптера можна переключати активні сторінки відеопам'яті. Виведення інформації може вироблятися як в активну, так і в неактивні сторінки відеопам'яті.
Схеми синхронізації на відеоплаті керують частотами розгортки монітора і роботою плати. Синхронізація всіх сигналів здійснюється генератором сигналів на відеоплаті що посилає імпульси щораз, коли промінь на екрані проходить три крапки (червону, зелену і синю). Ці три крапки і є піксель. Наприклад, якщо дисплей має дозвіл 640x480, то при перетинанні променем видимої частини зображення зліва направо надходить 640 імпульсів Генератор продовжує посилати імпульси коли промінь повторно сканує дисплей справа наліво а потім відновляє цикл на наступному рядку.
Якщо не брати до уваги надлишкове сканування і зворотний хід променя то частота генератора імпульсів буде дорівнювати добутку дозволяючої здатності на кількість кадрів у секунду. Для дисплея з дозволяючою здатністю) 1280x1024 при частоті кадрів 75 Гц частота генератора буде більшою 98 МГц
Цифро-аналоговий перетворювач (ЦАП) — це пристрій що видає аналоговий відеосигнал, який відповідає отриманому ним коду. Якщо перетворювач одержує нуль то видає нульовий сигнал, а при одержанні більшого числа — більший сигнал. У відеоплату вбудовані три ЦАП для сигналів червоного зеленого і синього кольорів переданих монітору. Генератор фіксує час надходження даних про пікселах з відеопам'яті в перетворювачі і з кожним імпульсом надсилають нове значення пікселя Припустимо, що дисплей працює в режимі 256 кольорів, тобто кожен піксель кодується одним байтом. У попередньому прикладі при частоті 98Мгц (1280x1024 при 75 Гц) відеопам'ять повинна передавати дані ЦАП на швидкості 94 Мбайт/сек
Швидкість передачі даних по внутрішній шині відеоадаптера перевищує можливості шин у комп’ютерах з Windows. Такий дуже швидкий потік даних до ЦАП по внутрішній шині відеоплати змусив розроблювачів застосувати сучасні технології забезпечення швидкісного обміну.
8. Графічний контролер
Перший IBM PC не передбачав можливості виводу графічних зображень. Сучасний дозволяє виводити на екран двох- і тривимірну графіку й полнокольорове відео.
Графічний контролер має власну оперативну пам'ять: 128/ 256 … Mb
Роздільна здатність – здатність відеокарти розмістити на екрані певна кількість крапок, з яких складається зображення. Чим більше крапок буде на екрані, тим менш зернистим і якісним буде зображення, тим більше графічної інформації можна розмістити на екрані.
9. Матриця
Матриця складається з безлічі світлочутливих комірок – пікселей. Комірка при влученні на неї світла виробляє електричний сигнал, пропорційний інтенсивності світлового потоку. Таким чином використовується інформація тільки про яскравість світла, картинка виходить у відтінках сірого.
Шаблон Байєра
Трьохшарова матрица
Щоб картинка була кольоровий, комірку покривають кольоровими фільтрами – у більшості матриць кожний піксель покритий червоним, синім або зеленим фільтром.
На матриці фільтри розташовуються групами по чотири:
G R
B G
(людське око найбільш чутливе до зеленого кольору).
Фільтр пропускає в комірку промені тільки свого кольору. Отримана картинка складається тільки з пікселей червоного, синього і зеленого кольорів – саме в такому вигляді записуються файли формату RAW (сирий формат). Для запису файлів JPEG і TIFF процесор камери аналізує колірні значення сусідніх комірок і розраховує колір пікселей (колірна інтерполяція).
10. Електронно-променева трубка (CRT)
Світіння люмінофора екрана під впливом електронного променя, формованого електронною гарматою.
Люмінофор – речовина, що випромінює світло при бомбардуванні зарядженими частками.
Люмінофорний шар складається з маленьких елементів, які відтворюють основні кольори RGB (тріади).
Світіння утвориться під впливом прискорених електронів від трьох електронних гармат (кожна для свого елемента тріади).
Керування світлом лампи підсвічування, що проходить через шар рідких кристалів за рахунок зміни ними площини поляризації.
Видимий розмір монітора по діагоналі - 15'', 17'', 19'', 21''.
Дозволи, підтримувані монітором- VGA, SVGA, XGA, SXGA, UXGA
Крок зерна - відстань між крапками на екрані (0,21 - 0,28 мм).
Частота регенерації - від 72 Hz. Стандарт VESA від 85 Hz.
11. Рідинно-кристалічні монітори (LCD)
Керування світлом лампи підсвічування, що проходить через шар рідких кристалів за рахунок зміни ними площини поляризації.
Переваги:
При порівнянному розмірі діагоналі видимої області 14'' LCD ( 15'' ЭЛТ)
Відблисків на екрані в 3 і більше раз менше (менше коефіцієнт відбиття).
Не створює шкідливого для здоров'я постійного електростатичного потенціалу.
Напруга кожного пікселя запам'ятовується транзистором до наступного відновлення, мерехтіння практично відсутнє й досить частоти регенерації 60 Гц .
Мала вага й габарити.
Споживає в 3-4 рази менше електроенергії.
Недоліки:
Недоліки передачі кольору й неможливість калібрування (не підходить дизайнерам і художникам).
Тільки “рідне” дозвіл.
Недостатні контрастність, швидкодія й стійкість до механічних ушкоджень.
Обмежений кут огляду.
Наявність “битих” пікселів.
Більш висока ціна.
TFT LCD – з активною матрицею
12. Плазмові панелі (PDP)
Як і в CRT-моніторі, у плазмовому світиться люмінофор, але не під впливом потоку електронів, а під впливом плазмового розряду.
Кожний осередок плазмового дисплея – флуоресцентна міні-лампа, що здатна випромінювати тільки один колір зі схеми RGB.
До положок кожного пікселя плазмового дисплея, між якими перебуває інертний газ (ксенон або неон), прикладається висока напруга, у результаті чого випускається потік ультрафіолету, що викликає світіння люмінофора.
97 % ультрафіолетової складової випромінювання, шкідливого для очей, поглинається зовнішнім склом.
Переваги:
Більше соковиті кольори в більше широкому діапазоні.
Широкий кут огляду.
Більше контрастність, чим в LCD, більше яскравість, чим в CRT.
Можуть досягати більших розмірів (з діагоналлю від 32" до 50") з мінімальною товщиною.
Недоліки:
Досягти розміру пікселя менше 0,5 мм практично неможливо. Тому плазмові телевізори з діагоналлю менше 32" (82 див) не існують.
Темні відтінки страждають від недоліку світла – їх важко відрізнити друг від друга. Тому що піксель плазми вимагає електричного розряду для випромінювання світла, то він може або горіти, або не горіти, але проміжного стану немає. Щоб піксель горів яскраво, його потрібно часто запалювати. Для одержання більше темного відтінку піксель запалюють рідше.
Загальноприйнято, що людське око не зауважує мерехтіння із частотою вище 85 Гц. Насправді, око здатне сприймати й більше високі частоти, але мозок не встигає їх обробляти. Тому 85-гц картинка може приводити до стомлення очей, навіть якщо глядач і не бачить мерехтіння, що й відбувається у випадку із плазмовими панелями.
Люмінофорний шар вигорає. Якщо на екрані відображається той самий канал у режимі 24/7, на ньому можуть вигоріти піксели логотипа (МТВ, НТВ і т.д.). Це ставиться й до рекламних екранів, що демонструють ту саму картинку. Синій канал завжди вигорає раніше.
Наслідок високих напруг – високе енергоспоживання. PDP 42" (107 см) – 250 Вт, а LCD з тією же діагоналлю – 150 Вт.
Сфери застосування:
Високоякісні відеосистеми великого формату. Прекрасно підходять для перегляду DVD або телебачення високого дозволу. Позиціонуються на high-end сектор ринку, де проблеми високої ціни, старіння люмінофора й високого енергоспоживання вторинні в порівнянні з якістю.
Ця технологія мало підходить для комп'ютерних моніторів.