Смекни!
smekni.com

Исследование точности численного интегрирования (стр. 1 из 3)

Министерство общего и профессионального образования РФ.

Уральский государственный технический университет – УПИ

Кафедра “Технология и средства связи”

"Исследование точности численного интегрирования"

"Research of Accuracy of Numerical Integration"

Отчет

по лабораторной работе

дисциплины

"Информатика",

третий семестр

Преподаватель: Болтаев А.В.

Студенты: Степанов А.Г

Черепанов К.А.

Группа: Р-207

Екатеринбург

2000

Содержание

1. Задание исследования.................................................................. 3

2. Подробное описание задачи и способы ее решения................... 3

3. Результаты исследований............................................................. 4

4. Сравнение результатов.............................................................. 12

5. Список библиографических источников................................... 13

6. Текст программы........................................................................ 13

Задание исследования

Провести исследование внутренней сходимости численного интегрирования методом Симпсона и трапеций различных функций, задаваемых с помощью языка С.

Подробное описание задачи и способы ее решения

Необходимо провести исследования так называемой внутренней сходимости численного интегрирования методами Симсона и трапеций различных функций, задаваемых с помощью функций языка С. Предполагается, что отрезок интегрирования [a,b] разбит на n равных частей системой точек (сеткой).

Контроль внутренней сходимости заключается в циклическом вычислении приближенных значений интеграла для удваимого по сравнению со значением на предыдущем прохождении цикла числа n. Отношения абсолютной величины разности этих значений к абсолютной величине предыдущего приближенного значения принимается в качестве критерия достижения точности интеграла.

Построить зависимости количеств итераций от различных величин критерия точности.

Построить обратные зависимости критерия точноти от количества итераций.

Повторить все вышеуказанные исследования для случая, когда при вычислении критерия точности разность значений интеграла относится не к предыдущему значению, а к точному значению аналитически вычисленного интеграла.

Исследовать влияние увеличения верхнего предела интегрирования на точность (при прочих неизменных условиях)

Метод трапеций

, где

Метод Симпсона

, где

Результаты исследований

Таблица и график зависимости количества итераций от различных значений критерия точности

Для

Критерий точности Количество итераций

-0,1676631

14

-0,1518916

16

-0,0046931

12

-0,0026531

11

-0,0002639

10

-0,0001709

2

-0,0001297

9

-0,0000557

3

-0,000025

8

-0,0000198

4

-0,0000096

5

-0,0000038

6

0

15

0,0000052

7

0,071089

13


Критерий точности Количество итераций

-0,1127271

16

-0,0750288

15

-0,0540677

14

-0,0021415

12

-0,0005711

11

-0,0000458

9

-0,0000381

2

-0,0000191

3

-0,000008

4

-0,000004

5

-0,0000019

7

-0,0000002

6

0,000005

8

0,0002983

10

0,0164377

13


Критерий точности

Количество итераций

-0,0066709

13

-0,0042367

14

-0,0003561

10

-0,0000016

5

-0,000001

4

0,0000005

3

0,0000006

6

0,0000009

2

0,0000009

7

0,0000223

8

0,000056

9

0,0002782

11

0,0003474

12

0,005293

16

0,0053267

15


Критерий точности Критерий точности

-61,4469795

12

-5,714047

3

-1,0215755

13

-0,7241433

2

-0,5121117

4

-0,3222643

11

-0,2163614

7

-0,1536629

9

-0,0930261

14

0,0353183

16

0,057059

15

0,1697371

5

0,2025534

10

0,2504728

6

0,6202592

8


Критерий точности Количество итераций

-0,0119308

16

-0,0007834

13

-0,0000079

3

-0,0000041

4

-0,0000037

7

-0,0000027

5

-0,0000027

6

-0,000002

8

-0,0000016

2

0,0000003

10

0,0000062

9

0,0000385

11

0,0000802

12

0,0005452

15

0,0016689

14