Смекни!
smekni.com

Численные методы решения задач управления технологическими процессами (стр. 3 из 4)

Теперь следует проверить, действительно ли найден экстремум. Для этого достаточно вычислить значение функции цели

(х) в предполагаемом экстремуме х=х1+Δх - х°ап и сопоставить его с оценкой. Если эти величины отличаются не более чем на ɛ т. е:

|( х°ап )-

(х°ап )|

, где ɛ заданная погрешность определения экстремума. При этом

= х1. Если условие не выполняется, тогда следует процесс поиска; т.е. выполнить следующий цикл, но уже построение

аппроксимирующей модели производится в окрестности точки х1= х°ап . Процедура будет повторяться пока не выполнится условие.

Алгоритм расчета.


Результаты расчета.

Целевая функция имеет вид :

Нач. знач. X=-100,H=0.5

Погрешность Е

Значение Х

Значение F

Кол-во итераций

Кол-во вычислений

1

(-)2,19360741

(-)919,076558

10

30

0.1

0,8912446

22,8921666

14

45

0.01

0,79728604

22,27161267

16

48

0.001

0,7960595

22,2612358

17

51

Нач. знач. Х=-100, Е=0.1

Шаг Н

Знач Х

Знач F

Кол-во итераций

Кол-во вычислений

Увеличение шага

0,3

0,901465

22,93463

25

75

0,5

0,797286

22,27161

16

48

0,8

0,6115913

20,33949

35

105

Уменьшение шага

0.5

0,79728604

22,27161267

16

48

0.4

0,8540667

22,69232

20

60

0.3

0,901465

22,934634

25

75

0.2

0,936694

23,034198

41

123

0.1

0,961479

23,056109

31

93

0.02

0,961661

23,05611

25

75

Вывод: расчеты показали, что изменение погрешности определения экстремума ɛ, практически не влияет на точность вычисления в то время, как изменение шага поиска h оказывает значительное влияние. При уменьшении шага точность вычислений улучшается и наоборот, при увеличении шага уменьшается. И в конечном итоге, когда шаг поиска слишком велик для того, чтобы с помощью итерационной процедуры уточнения значений получить результат с заданной погрешностью, программа отказывается производить вычисления.

Оптимизация методом наискорейшего спуска.

Метод наискорейшего спуска предназначен для поиска минимума. Данный метод отличается от метода градиента правилом определения коэффициента шага. Сначала выделяется начальная точка. В пространстве X могут быть выделены области притяжения каждого из локальных минимумов.

Если алгоритм начинает поиск из начальной точки, лежащей в области притяжения некоторого минимума функции

против направления градиента. Таким образом, в каждом цикле решается одномерная задача минимизации
, после чего шаг
находится как


Алгоритм расчета.


Результаты расчета.

Целевая функция имеет вид :

Н=1,E=0.01

Приращение L

Оптим. зн. XI

Оптим. зн. Х2

Оптим. зн. ХЗ

Оптим. зн. F

0,5

-10,75

17,25

-12,75

0,1875

0.1

-10,95

17,04

-12,95

0,0074

0.01

-10,995

17,005

-12,994

7,5000001E-7

0.001

-10,99

17

-12,99

7,49752E-9

L=0.0001, Е=0.1

Шаг h

Оптим. зн. XI

Оптим. зн. Х2

Оптим. зн. ХЗ

Оптим. зн. F

10

-100

100

-100

31979

5

-100

100

-100

31979

1

-10,9

17

-12,9

7,5

0,5

-10,9

17

-12,9

7,49934E-9

0,1

-10,9

17

-12,9

7,49934E-9

Н=0.5, L=0.0001

Погрешность Е

Оптим. зн. X 1

Оптим. зн. Х2

Оптим. зн. ХЗ

Оптим. зн. F

1

-121,99

65,9

-125,9

31978,93

0.1

-10,99

17

-12,99

7,49752Е-9

0.01

-10,99

17

-12,99

7,49752Е-9

0.001

-10,99

17

-12,99

7.49752Е-9

Оптимизация методом линейного программирования.

f0(x)=4x+3y

Представим уравнения прямых, составляющих прямоугольник, в виде ограничений для целевой функции и проверим правильность постановки знаков:

1)3x-y≤4

2)x-2y≤-7

3)3x+y≤21

4)-x+4y≤6

Следовательно искомые ограничения:

1)-3x+y-4

2)-x+2y≤7

3)3x+y≤21

4)x-4y≤-6

Точки min и max:

Amin (2;2) Cmax (5;6)

min и max функции:

f0(x)min=14

f0(x)max=38

Расчет производится в приложении МАТLАВ.

»f=[4,3]

f = 4 3

»A=[-3,l;-l,2;3,l;l,-4]

A =

-3 1

-1 2

3 1

1 -4

» B=[-4;7;21;-6]

B =

-4

7

21

-6

» [x,y,z]=linprog(f,A,B) Optimization terminated,

x =

2.0000

2.0000

y =

14.0000

z = 1

Решение задачи нелинейного программирования.

Задача №2.

Имеются три продукта n1,n2,n3 разной цены. Каждый из них содержит определенное количество питательных ингредиентов, причем для нормального потребления требуется u1≥250; u2≥60; u3≥100; u4≥220.

Минимизировать затраты на приобретение продукта.

N1

N2

N3

U1

4

6

15

U2

2

2

0

U3

5

3

4

U4

7

3

12

Цена за единицу

44

35

100

Расчет производится в приложении МАТLАВ.