Министерство образования Российской Федерации
Саратовский Государственный Технический Университет
Кафедра «Организация перевозок и управление на транспорте»
КУРСОВАЯ РАБОТА
по дисциплине
«Информационные технологии на транспорте»
Зачетная книжка №070047
Выполнил: студент гр. ОПТ-33
Авдошин А.С.
Проверил: Красникова Д.А.
1. Классическая транспортная задача 3
1.1 Математическая постановка задачи 4
1.2 Решение задачи в среде Excel 6
2. Транспортная задача с промежуточными пунктами 8
2.1 Математическая постановка задачи 9
2.2 Решение задачи в среде Excel 11
3. Задача о назначениях 15
3.1 Математическая постановка задачи 15
3.2 Решение задачи в среде Excel 17
Заключение 24
Список использованной литературы 25
Задание 1
Классическая транспортная задача
Оптовая фирма по продаже цемента имеет четыре склада, находящиеся в разных районах г.Саратова, объёмы запасов на которых представлены на рисунке 1. Фирма обслуживает строительные организации, которые производят капитальный ремонт четырёх объектов, спрос которых также представлен на рисунке 1. Расстояния между складами и объектами строительства представлены в таблице 1.
Объекты строительства | ||
Бассейн | Школа | |
Волжский | 10 | 9 |
Ленинский | 4 | 10 |
Средняя стоимость перевозки 1 мешка с цементом на 1 км составляет 5 рублей. В результате получаем, представленную в таблице 2, стоимость перевозок по каждому маршруту.
Таблица 2 - Стоимость перевозок по каждому маршруту
Стоимость перезозки, руб | ||
Объекты строительства | ||
Бассейн | Школа | |
Волжский | 50 | 45 |
Ленинский | 20 | 50 |
1.1 Математическая постановка задачи
а) мощность i-го источника (объем поставок товара от i-го источника) равна Si>0, i=1,...,m;
б) мощность j-го стока (объем поставок товара к j-му стоку) равна Dj>0, j=1,...,n;
в) стоимость перевозки единицы товара (в условных денежных единицах) от i-го источника к j-му стоку равна cij;
Когда суммарный объем предложений (грузов, имеющихся в пунктах отправления) не равен общему объему спроса на товары (грузы), запрашиваемые пунктами назначения, транспортная задача называется несбалансированной. В этом случае, при решении классической транспортной задачи методом потенциалов, применяют прием, позволяющий несбалансированную транспортную задачу сделать сбалансированной. Для этого вводят фиктивные пункты назначения или отправления. Выполнение баланса транспортной задачи необходимо для того, чтобы иметь возможность применить алгоритм решения, построенный на использовании транспортных таблиц.
1.2 Решение задачи в среде Excel
Данную задачу можно решить симплекс-методом или с помощью, так называемой, транспортной таблицы. Исходные данные для решения классической транспортной задачи целесообразно представить в виде двух таблиц, в первой из которых представлены значения стоимости перевозок единицы товара cij от i-го поставщика к j-му потребителю. Во второй таблице представлены: значения Si предложения каждого i-го поставщика; значения Dj спроса каждого j-го потребителя; переменные xij, первоначально принимающие нулевые значения; вспомогательная строка и вспомогательный столбец "Сумма". Целевая ячейка D24 должна содержать формулу, выражающую целевую функцию:
=СУММПРОИЗВ(B12:C13;C20:D21)
Используя меню СервисÞПоиск решения открываем диалоговое окно Поиск решения, в котором устанавливаем целевую ячейку равной минимальному значению, определяем диапазон изменяемых ячеек и ограничения и запускаем процедуру вычисления, щелкнув по кнопке Выполнить.
В Excel несбалансированная транспортная задача решается путем изменения ограничений по спросу (если спрос превышает предложение) или по предложению (если предложение превышает спрос).
Таблица 9 – План оптимального закрепления
Потребительский спрос бассейна и школы удовлетворены полностью. На складе Волжского района остается не вывезенным 300 мешков, на Ленинском складе – 250 мешков.
Общая стоимость перевозки составляет 53500 условных единств.
Задача 2.
В транспортной сети, показанной на рисунке 2, осуществляются перевозки груза из пунктов 1 и 2 в пункты 5 и 6 через транзитные пункты 3 и 4. Стоимость перевозки единицы груза между пунктами показана в таблице 3. Предложение пунктов 1, 2 (П1 и П2) и спрос пунктов 5,6 (С5 и С6) выбирается соответственно из таблиц 4 и 5. Построить транспортную модель с промежуточными пунктами.
Рисунок 2 – Схема транспортной сети
Таблица 3 – Стоимость перевозки единицы груза между
пунктами транспортной сети
Поставщиики | Потребители | |||
3 | 4 | 5 | 6 | |
1 | 2 | 3 | 100 | 100 |
2 | 5 | 4 | 100 | 100 |
3 | 0 | 3 | 6 | 100 |
4 | 3 | 0 | 4 | 5 |
5 | 100 | 100 | 0 | 4 |
ПРЕДЛОЖЕНИЕ ПУНКТА 1 | 170 |
ПРЕДЛОЖЕНИЕ ПУНКТА 2 | 180 |
СПРОС ПУНКТА 5 | 155 |
СПРОС ПУНКТА 6 | 195 |
2.1 Математическая постановка задачи