Существуют два метода отбора спектральных коэффициентов: зональный и пороговый. Первый метод заключается в том, что заранее, исходя из статистики изображений, в матрице спектральных коэффициентов выделяются зоны и все спектральные коэффициенты, входящие в одну зону, квантуются на одно и то же число уровней, как это показано на рис. 3.1.
Рис. 3.1.
Второй метод состоит в том, что сохраняются только те спектральные коэффициенты, амплитуда которых превышает заранее установленный порог. Этот метод отбора сложнее зонального, поскольку кроме передачи (записи) значений спектральных коэффициентов необходимо также передавать (записывать) их индексы.
Перед тем как переходить к более детальному рассмотрению метода сжатия данных, основанного на применении ортогональных преобразований, сравним его с ДКИМ. Общим для этих двух методов является двухэтапная обработка изображений, включающая в себя декорреляцию и последующее оптимальное кодирование сигнала. Важное различие между ДКИМ и методом сжатия с использованием ортогональных преобразований состоит в том, что в первом случае имеет место декорреляция за счет предсказания, при которой используется “локальная” статистика изображения, в то время как во втором случае имеет место декорреляция за счет укрупнения и, следовательно, используется “средняя” статистика изображения. При передаче стационарных изображений эта особенность не играет роли, и оба метода сжатия дают близкие результаты. Если же изображение не стационарно, как например, при передаче мелкомасштабного объекта на фоне поля с медленно изменяющейся яркостью, это различие в способе декорреляции весьма существенно. На той части изображения, где расположен мелкомасштабный объект, “текущее” значение коэффициента автокорреляции между сигналами от соседних отсчетов невелико (
где
где
а нас будут интересовать разделимые преобразования, то оно может быть выполнено в два этапа, вначале по всем столбцам, а затем по всем строкам
и соответственно
Для удобства записи и вычислений используют матричный аппарат. В матричной форме разделимые ортогональные преобразования записываются следующим образом
где
Учитывая, что
где
Базисные функции
в этих формулах множитель
Известно, что (ДПФ) не является лучшим преобразованием для применения в целях сжатия данных, т.к. значения спектральных коэффициентов в области высоких пространственных частот при этом преобразовании имеют сравнительно высокие значения. В настоящее время при сжатии изображений широкое распространение получило дискретное косинусное преобразование (ДКП). Среди других ранее применявшихся ортогональных преобразования при сжатии изображений следует назвать: преобразование Адамара (ПА), преобразование Хаара (ПХ), наклонное преобразование (slanttransform).