Смекни!
smekni.com

Возникновение и перспективы создания искусственного интеллекта (стр. 2 из 7)

Это соображение лежит в основе второй особенности машинных систем доказа­тельства теорем, важной для искусственного интеллекта. С учетом семантики решаемой задачи на дереве поиска вывода возможно указать некоторые эвристиче­ские правила, сокращающие перебор путей, ведущих от исходных формул к доказываемой (при прямом методе доказательства) или от доказываемой к исход­ным (при обратном методе доказательства). Именно при доказательстве теорем, по-видимому, впервые возникла идея эвристических правил, как путей сокращения большого перебора. Эта идея в дальнейшем развилась в целую ветвь – эвристиче­ское программирование, сыгравшую большую роль на начальном этапе работ по интеллектуальным системам. Особенно интересными были эвристические правила, отражавшие особенности доказательства теорем человека в геометрии. Начальный этап исследований в области машинного доказательства теорем отражен в сборнике [7], вышедшем в США в 1963 г., а дальнейшее развитие работ – в [8-10].

4. Распознавание образов. Это еще одно направление, родившееся в 50-е годы, как следствие начала использования ЭВМ для решения невычислитель­ных задач. Традиционная постановка задач в этой области близка к задаче класси­фикации: необходимо найти совокупность классифицирующих признаков, с по­мощью которых было бы возможным построить решающие правила, относящие те или иные единичные объекты к заранее выделенным или формируемым по отноше­нию близости по признакам классам. Распознавание образов – активно и бурно развивающаяся наука, имеющая ярко выраженное прикладное значение, вырабо­тавшая свои приемы и методы решения задач. Часть из них (например, статистические методы распознавания или распознавание с помощью метода потенциальных функций) по своим идеям весьма далеки от идей и методов искусственного интеллекта. Поэтому они не оказали заметного влияния на его развитие. Другая же часть методов теории распознавания (особенно та, методы которой опираются на идею построения классифицирующей системы признаков в процессе обучения), наоборот, весьма близка к искусственному интеллекту, связана с ним и продолжает оказывать значительное влияние на работы в области интеллектуальных систем.

Наиболее значительны для работ по интеллектуальным системам идеи теории распознавания, связанные с обучением нахождению решающего правила на множе­стве положительных и отрицательных примеров. Пожалуй, впервые подобный подход со всей его полнотой был реализован в СССР в начале 60-х годов М.М.Бонгардом и его учениками [11]. Созданные им методы узнавания надолго определили соответствующие исследования в области распознавания образов и систем класси­фикации, применяемых в интеллектуальных системах. В 70-е годы Ю.И.Журавле­вым и его учениками были заложены основы теории, позволяющей конструировать новые процедуры распознавания образов и проводить сравнения различных мето­дов.

Не менее интересными для искусственного интеллекта являлись логико-лингвистические методы распознавания, опирающиеся на описание объектов классифика­ции с помощью специальных языковых средств и на логический вывод в качестве решающего правила классификации.

5. Игровые программы. Использование ЭВМ для моделирования на них процес­са игры также имеет давнюю историю. Программы для простых игр типа "крести­ки-нолики" или "ханойская башня" появились в самом конце 40-х годов. Потом число таких программ стало быстро увеличиваться. На ЭВМ стали воспроизводить процесс игры в различные карточные игры, калах, домино, шашки, шахматы, и многие другие. Практически, сейчас нет ни одной игры, которая была бы достаточно популярна и не использовалась бы для воспроизведения на вычислительной маши­не. При создании таких программ исследователи столкнулись с проблемой поиска и перебора. И эти процедуры надолго привлекли внимание специалистов. Нахож­дение эффективных стратегий поиска по дереву игры было задачей, во многом похожей на задачу поиска эффективных путей доказательства теорем. Классифи­кация ситуаций, складывающихся на игровом поле, во многом сближала возника­ющие здесь задачи с традиционными задачами распознавания образов. Это делало игровые программы хорошим полигоном для отработки различных приемов и методов поиска решений в условиях богатого множества альтернатив [12].

Впервые проблема алгоритмизации шахматной игры была рассмотрена в 1949 г. К.Шенноном (США), который предложил использовать при организации шахмат­ных программ следующие три принципа, остающиеся до настоящего времени основными для большинства программ такого рода: 1) перебор возможных продолже­ний шахматной партии на определенное число ходов вперед; 2) оценка возникаю­щих позиций с помощью некоторой оценочной функции, учитывающей материал и позицию; 3) использование эвристических приемов для сокращения перебора при просмотре ходов вперед за счет учета специфики шахматной игры [13].

Последний принцип особенно важен, т.к. рост перебора вариантов при увеличе­нии глубины просмотра продолжения шахматной партии происходит весьма быстро, имея экспоненциальный характер, что предъявляет повышенные требования к быстродействию ЭВМ. Поэтому именно в шахматных программах зародились идеи методов сокращения перебора на древовидных структурах. В СССР первый такой метод (метод граней и оценок) был предложен А.С.Брудно. В США методами подобного типа много занимался Н.Нильсон. Примером удачного применения эвристических приемов к шахматным программам может служить программа "Каисса", созданная в СССР В.Л.Арлазаровым, Г.М.Адельсоном-Вельским и М.Б.Дон­ским,

В последнее время в связи с развитием методов искусственного интеллекта стали появляться новые идеи и в шахматных программах. Их функционирование стало опираться не на простой перебор вариантов, а на попытку смоделировать на ЭВМ особенности мышления человека-шахматиста. В СССР эти новые идеи нашли свое отражение в проекте программы "Пионер", разработанной под руководством М.М.Ботвинника [14]. За рубежом принципы построения программ такого типа обоснованы Д.Мичи. Эвристики и приемы сокращения перебора при большом количестве вариантов, разработанные в области создания игровых про­грамм (особенно шахматных), находят сейчас широкое применение в различных интеллектуальных системах.

6. Сочинение музыки и текстов. В середине 50-х годов в США (Л.Хиллер и Л.Айзексон), а несколько позже в СССР (Р.Х.Зарипов) были сделаны первые попытки сочинения музыкальных произведений с помощью программ, реализуемых на ЭВМ. В основе этих программ лежала идея об использовании генераторов случайных чисел, интерпретируемых как нотные знаки со всеми присущими им параметрами, для порождения музыкального произведения за счет отбора из гене­рируемого потока нот лишь тех, которые удовлетворяли бы определенным прави­лам. Эти правила заимствовались из музыковедческой литературы и отражали специфику восприятия музыки человеком [15,16]. Таким образом, в этих програм­мах, как и в некоторых программах автоматизированного реферирования или доказательства теорем, использовался случайный процесс, детерминируемый систе­мой ограничивающих модельных правил. Этот прием оказался в дальнейшем полезным и для ряда программ искусственного интеллекта. А сама возможность имитации творческого процесса человека в такой области, которая всегда считалась вершиной его интеллектуальной деятельности, имела немаловажное значение для понимания возможностей ЭВМ в этой сфере.

В середине же 50-х годов делаются первые попытки использования ЭВМ для генерации связных текстов, как поэтических, так и прозаических [17]. Однако до развития работ в области искусственного интеллекта эти исследования не получили достаточного распространения и не оказали существенного влияния на другие направления, связанные с моделированием творческих процессов. Столь же незначительно повлияло на работы в области искусственного интеллекта появление первых программ, связанных с машинной графикой. Лишь несколько позже, когда появились хорошие черно-белые и цветные дисплеи, а программы машинной графики стали намного интереснее, специалисты в области искусственного интел­лекта обратили внимание на эти работы. Сейчас же машинная графика стала вполне самостоятельным направлением и подобно распознаванию образов развива­ется вне рамок искусственного интеллекта, хотя и испытывает его влияние на свои методы и представления. Достаточно полное представление о современном состоя­нии дел в той части машинной графики, которая наиболее тесно связана с моделированием творческой деятельности, может дать монография [18]. Из-за отсутствия хороших дисплеев уровень исследований в этой области в странах Восточной Европы и СССР несколько отстает от уровня их развития в США, Японии и странах Западной Европы.

Все перечисленные сферы применения ЭВМ для решения нечисловых задач сыграли роль катализирующих ферментов, способствуя консолидации усилий отдельных специалистов вокруг вопросов, связанных с решением задач, относящих­ся к сфере интеллектуальной деятельности человека. Эта консолидация привела к появлению первых моделей и систем, которые знаменовали собой переход к созданию новой науки – искусственного интеллекта.