Смекни!
smekni.com

Возникновение и перспективы создания искусственного интеллекта (стр. 3 из 7)

II. Начальный этап развития

Важным моментом начала того направления, которое можно было бы назвать собственно искусственным интеллектом, была проведенная в 1956 г. конференция в Дартмуте (США). На этой конференции были К.Шеннон, М.Минский и Дж.Маккарти. Двум последним предстояло в дальнейшем сыграть крупную роль в станов­лении искусственного интеллекта. Именно на этой конференций сам термин "ис­кусственный интеллект" приобрел права гражданства.

К середине 60-х годов в СССР, США, Великобритании и других странах, в которых активно внедрялась вычислительная техника, было накоплено множество самых разнообразных программ для решения нечисловых задач. Среди них было немало таких, которые демонстрировали возможность имитации на ЭВМ отдельных творческих процессов, присущих человеку. Возникший опыт создания таких про­грамм требовал обобщения и формализации. Следствием Дартмутской конферен­ции явился "Исследовательский проект по искусственному интеллекту" – первый комплексный проект в этой области. Его возглавил Дж.Маккарти.

Стали появляться первые публикации, в которых делались попытки обобщения накопленного материала. Среди специалистов, выступивших с такими работами, были Дж.Маккарти, М.Минский, Э.Фейгенбаум (США), Д.Мичи (Великобрита­ния), А.А.Ляпунов и В.М.Глушков (СССР). В дальнейшем существенный вклад в развитие методологии искусственного интеллекта внесли Г.С.Поспелов, Н.М.Амо­сов, Д.А.Поспелов, А.С.Нариньяни, Э.В.Попов (СССР), Р.Шенк, Д.Бобров, П.Уинстон, Дж.Слейгл, Н.Нильсон, Э.Хант, Т.Виноград (США), Э.Сандовал (Швеция), М.Сомальвико (Италия) и др.

Но на пути становления искусственного 'интеллекта как самостоятельного на­правления имелось немало трудностей. Практика создания "интеллектуальных программ" выявила парадоксальное положение: чем больше создавалось таких программ, тем меньше были видны принципы их создания. Если, например, некоторый исследователь создавал эффективную программу для игры в шашки и вводил ее в память ЭВМ, то создание следующей интеллектуальной программы, предназначенной', например, для игры в домино, никак не облегчалось тем, что в памяти ЭВМ уже хранится хорошая шашечная программа. А добавление к ней программы для игры в домино ничуть не облегчало создание программы для игры в калах или какую-нибудь другую игру. Память ЭВМ могла заполняться интеллекту­альными программами сколь угодно долго, но от этого ЭВМ не становилась "интеллектуальнее". Содержимое ее памяти напоминало огромную библиотеку, в которой хранятся знания почти по всем отраслям человеческой деятельности, но которая, конечно, никаким интеллектом не обладает. Становилось ясным, что на пути простого увеличения количества программ, одновременно хранимых в ЭВМ, нельзя добиться поднятия ее коэффициента интеллектуальности.

Эта ситуация хорошо отражается в книгах по искусственному интеллекту, изданных в начале 70-х годов [19-20]. Их оглавления напоминают что-то вроде меню или прейскуранта. Отдельные главы посвящены различным типам задач, каждая из которых решается своим особенным образом, с помощью специальной, ориентированной только на эту задачу программы.

Но на этом фоне и в это же время начинают появляться первые признаки новой парадигмы. Это парадигма поиска универсальной процедуры, которая позволила бы решать единообразно большое количество интеллектуальных задач. И появление такой парадигмы естественным образом означало обращение специалистов в обла­сти интеллектуальных программ к психологам, занимающимся психологией мыш­ления и психологией решения задач.

Первой моделью психологии, которая в течение десятка лет сохраняла свое значение для работ в области моделирования интеллектуальной деятельности, явилась известная еще с начала нашего века лабиринтная модель решения задач, в наиболее общей форме описанная в 1911 г. Э.Торндайком. Согласно представле­ниям, вытекающим из этой модели, процесс решения задачи можно уподобить прохождению лабиринта. Начальные площадки лабиринта соответствуют исходным данным задачи, а пути, приводящие к целевой (или одной из целевых, если их несколько) площадке, определяют возможные, пути решения. Выбор пути на каждой из промежуточных площадок лабиринта эквивалентен принятию решения из име­ющегося в этот момент множества альтернатив. В машинных программах такому движению по лабиринту соответствует поисковая процедура, управляемая решаю­щими правилами, с помощью которых производится тот или иной выбор при каждой альтернативной ситуации.

Именно такая модель была положена в основу одной из первых программ, которую по праву можно отнести к программам искусственного интеллекта. Эта программа была создана в конце 50-х годов в США в содружестве программиста А.Ньюэлла и психолога Г.Саймона. Она была названа ее авторами General Problem Solver, т.е. "Универсальный решатель задач". Авторы программы GPS с самого начала рассматривали ее как модель описания поведения человека при решении задач широкого класса, для которых можно воспользоваться лабиринтной моделью. Основу GPS составляет специальная таблица "Цели-Средства". В строках таблицы перечислены все цели, достижение которых может потребоваться при очередном альтернативном выборе, а в столбцах указаны те средства, которые могут быть использованы на каждом шаге решения. Специальные отметки в клетках таблицы показывают, какие средства годятся для достижения тех или иных целей. А.Ньюэлл и Г.Саймон считали, что модификация этой глобальной идеи совместно с идеей многошагового планирования движения по лабиринту с учетом особенностей реше­ния тех или иных конкретных задач позволит решать большинство интеллектуаль­ных задач. Они рассмотрели две такие модификации: для доказательства теорем в исчислении высказываний и для игры в шахматы. Но если первая модификация оказалась весьма успешной, то опыт работы с шахматной программой заставил авторов GPS усомнится в глобальности выдвинутой ими идеи. Шахматная програм­ма, построенная на основе таблицы "Цели-Средства", оказалась весьма слабой и не выдержала конкуренции с шахматными программами, построенными на других принципах. Описание программы GPS и ее модификаций можно найти в [7] и [19], а также во многих других книгах по искусственному интеллекту. Идея движения по лабиринту или эффективного поиска по некоторой сетевой структуре оказалась в центре внимания многих исследователей. Работа Н.Нильсона [22] практически полностью посвящена методам поиска решений на основе лабиринтной модели.

Если лабиринтная модель оказалась в центре внимания специалистов по интел­лектуальным программам, то не менее известные в психологии модели вероятно­стного выбора и основанные на них модели обучения не оказали на этих специа­листов большого влияния. Работа Р.Аткинсона [23] и ранее предшествующие ей работы в этой области так и не вышли из сферы интересов весьма ограниченного круга специалистов, работающих в области математической психологии. Что каса­ется обучения, то в области интеллектуальных систем явное предпочтение было отдано моделям логического типа, Примерами могут служить те модели, которые исполь­зованы в известной поведенческой программе "Животное", созданной учениками М.М.Бонгарда (СССР). Близка к тем же идеям и программа формирования понятий на основе индуктивных выводов CLS, разработанная в середине 60-х годов в США под руководством Э.Ханта [24].

Лабиринтная модель решения задач оказалась слишком упрощенной. Она негласно предполагала, что лабиринт, в котором нужно найти решение, существует заранее. Но большинство творческих задач, решаемых людьми, связаны как раз с тем, как построить не слишком большой лабиринт, в котором с большой долей вероятности содержится путь, ведущий к цели.

Критика лабиринтной модели и основных на ней программ решения интеллек­туальных задач была достаточно активной. О ее характере дает представление, например, работа Д.А.Поспелова и В.Н.Пушкина [26]. В этой же работе, по-види­мому, впервые была подробно описана иная концепция решения задач человеком, которую можно было бы назвать реляционной моделью (в работе [26] она названа модельной гипотезой). Согласно этой модели исходные данные для решения задачи не представляют собой совокупность несвязанных компонентов. Между ними имеются определенные отношения, образующие структуру исходной ситуации. Аналогичным образом целевые описания образуют некоторую структуру целевой ситуации. Поиск решения сводится к установлению между этими структурами некоторого морфизма и построению путей преобразования одной ситуации в дру­гую. Эти принципы реляционной модели нашли свое подтверждение в многочис­ленных психологических экспериментах (и, в частности, при экспериментах с людьми, играющими в шахматы). Стала очевидной важность работы с отношения­ми и системами отношений, связывающими элементы проблемной среды воедино.

В середине 60-х годов в СССР возник комплекс методов решения различных управленческих задач, опирающихся на реляционную модель. Эти методы получи­ли общее название "ситуационное управление". В их основе лежит идея о том, что любая ситуация, которая может возникнуть в физическом мире, может быть описана через конечное число базовых отношений, из которых при необходимости могут быть порождены производные отношения. Те. или иные решения соответству­ют классам таких ситуаций. Центральной задачей принятия решения является отнесение текущей ситуации к одному из классов, что позволяет принять опреде­ленное решение. Сама система классов ситуаций априорно полностью не задается, а формируется в процессе функционирования системы. Концептуальная программа, лежащая в основе конкретных программ, построенных на подобных принципах, была предложена Д.А.Поспеловым и В.Н.Пушкиным и названа Гироматом. При решении ряда конкретных задач, связанных с задачами оперативного управления сложными системами, было использовано несколько конкретных реализаций этой концептуальной программы. Историю развития ситуационного управления и описа­ние принципов Гиромата можно найти в [27]. Метод ситуационного управления, пожалуй, раньше чем все другие подходы, развивавшиеся в этот период в области создания интеллектуальных программ, использовал идею представления знаний и манипулирования ими. Эта идея является центральной на современном этапе развития работ в ИИ.