Роботы с интерактивным управлением следует признать системами более высокого интеллектуального уровня, чем автономные роботы, т.к. возможности человеческого разума на уровне принятия решения в критических ситуациях превосходят в настоящее время самые развитые системы искусственного интеллекта.
Мобильные роботы с интерактивным управлением - это роботы, которые могут работать, и в автоматическом режиме, и управляться человеком-оператором. В отличие от биотехнических систем (систем с ручным управлением), интерактивные системы имеют устройства памяти для автоматического выполнения определенных действий [6].
По функциональному назначению мобильные роботы классифицируются на следующие группы:
– специального назначения;
– для военных и военизированных применений;
– для экстремальных ситуаций, научных исследований;
– для спортивных, промышленных и бытовых применений.
1.2 Структура мобильного робототехнического комплекса
Любой мобильный робот может быть представлен в виде совокупности трех больших систем - транспортной, специальной и управления [7].
Транспортная система представляет собой транспортное средство, предназначенное для доставки специального и технологического оборудования к месту выполнения поставленной задачи.
Транспортное средство состоит из ходовой части, корпуса и энергетической установки. Как правило, система управления устанавливается внутри корпуса. В зависимости от типа среды эксплуатации ходовая часть может быть гусеничная, колесная, колесно-гусеничная, полугусеничная, шагающая, колесно-шагающая, роторная.
Облик наземного мобильного робота в первую очередь определяется типом и конструкцией движителя, служащего для преобразования в процессе взаимодействия с внешней средой усилия, получаемого от двигателя, в тяговое усилие, движущее транспортное средство.
Выбор типа движителя и его размеров является очень сложной задачей. Практически невозможно создать универсальную конструкцию движителя, дающего возможность одинаково уверенно передвигаться в разнообразных условиях окружающей среды. Множество видов и свойств оснований, сложные пересечения рельефа местности, необходимость перемещения по элементам сооружений и внутри зданий являются причиной создания большого числа компоновочных схем роботов с различными типами движителей.
Основное внимание разработчиков уделяется различным вариантам колесного и гусеничного движителей. Несколько меньшее внимание уделено шагающему движителю. И существенно меньшее - другим типам (например, роторно-винтовому, аппаратам на воздушной подушке и др.).
Для каждого типа движителя существует своя область применения. Так, в качестве движителя многофункционального мобильного робота, предназначенного для использования на труднопроходимой местности, выбирают гусеничный движитель как наиболее универсальный. При преимущественном использовании робота на дорогах более предпочтительным является колесный вариант транспортного средства. Применение шагающих машин перспективно лишь в среде, где скорость колесного или гусеничного движителя уступает скорости шагающего движителя (например, в горной местности, в очагах разрушений и т.п.). При конструировании обычных транспортных средств параметры движителя оптимизируются для наиболее характерных условий применения и поверхностей движения. Однако, для мобильного робота такая оптимизация невозможна в силу неопределенности условий движения. Поэтому в настоящее время движители роботов конструируются с возможностью адаптации к поверхности движения.
Специальные системы служат для непосредственного выполнения поставленных задач. Специальная система состоит из необходимого набора технологического оборудования, состав которого определяется видом решаемой задачи и назначением МР.
Система управления обеспечивает управление движением и работой технологического оборудования, а также адаптивное управление ходовой частью и энергетической установкой с учетом взаимодействия транспортной системы с окружающей средой.
Система управления движением должна также обеспечивать планирование движения в недетерминированных условиях на основе картографической базы, с учетом непрерывно поступающей информации в систему управления от технических органов чувств и навигационной системы.
Сложность системы управления определяется сложностью решаемой задачи, степенью неопределенности внешней среды и требуемой степенью автономности робота.
Именно развитие систем управления определяет развитие робототехнических комплексов в целом, и, в частности, легло в основу классификации мобильных роботов по поколениям. В общем случае система управления содержат три уровня управления: верхний (стратегический), средний (тактический) и нижний (исполнительный), которые имеют встроенные механизмы адаптации, работающие на основе оценки качества реализации планов различного уровня в реальном физическом мире. Организация взаимодействия уровней управления должна позволять принимать решение на том уровне, который в данный момент обладает наиболее достоверной информацией, без передачи управления на более высокий уровень.
Человек (оператор) является в настоящее время неотъемлемой частью системы управления. Функции человека в системе управления определяют ее сложность.
В роботах первого поколения оператор активно участвует в управлении мобильным роботом на всех трех уровнях, вплоть до непрерывного ручного управления исполнительными механизмами. Это упрощает конструкцию системы управления, но усложняет работу оператора. Основные недостатки дистанционного управления обусловлены наличием телевизионного и радиоканалов связи, их невысокой помехозащищенностью, невозможностью сохранять режим радиомолчания, опасностью неожиданного прекращения связи в зонах радиотени.
В роботах второго поколения управление нижнего уровня возложено на бортовую систему управления роботом. Общим для роботов второго поколения является использование обратной связи как в соответствии с текущим состоянием робота, так и в соответствии с состоянием внешней среды.
Третье поколение роботов оставляет человеку только стратегический уровень: система общения с оператором сводится к выдаче задания и принятию отчета о его выполнении. Платить за облегчение жизни оператора приходится весьма дорого: автоматическая система должна обладать универсальностью, гибкостью и широтой возможностей естественного интеллекта. При этом любая решаемая системой искусственного интеллекта дополнительная задача, а тем более класс задач или ситуаций, требует не только разработки специальных алгоритмов решения, но и специализированных технических средств - новых технических органов чувств, спецвычислителей и исполнительных органов, т.е. каждая такая задача представляет собой сложную научно-технологическую проблему.
1.3 Мобильные роботы специального назначения
Мобильные роботы специального назначения применяются при проведении взрывотехнических работ и антитеррористических операций, а также при охране важных объектов.
При этом применение роботов возможно для решения следующих тактических задач [8]:
– при проведении взрывотехнических работ:
1) поиск и диагностика взрывных устройств;
2) уничтожение или эвакуация взрывных устройств;
3) расснаряжение или обезвреживание взрывных устройств;
4) проведение химической и радиационной разведки объектов и территорий;
– при проведении антитеррористических операций:
1) постановка радиоэлектронных помех, дымовых и специальных завес;
2) доставка и применение спецсредств нелетального действия;
3) скрытое проникновение на захваченные и охраняемые объекты;
4) ведение радиоэлектронной аудио- и видеоразведки объектов и территорий;
5) разрушение преград (двери, стены);
6) ведение отвлекающего огня, выявление огневых точек противника;
– при охране объектов:
1) патрулирование территории или периметра объекта;
2) пресечение попыток проникновения на объект;
3) нейтрализация нарушителей.
Указанные операции проводятся на разных объектах и в разнообразных условиях:
– на объектах общественного транспорта (городской транспорт, железнодорожный, авиационный, морской, автомобильный);
– в местах проживания и жизнедеятельности людей (квартиры, дома, офисы и др.);
– на промышленных объектах (объекты химической промышленности, ядерного технологического цикла и пр.);
– на объектах городской инфраструктуры (канализация, теплостанции, водопровод и т.п.);
– на открытой местности, на сильно пересеченной местности, в лесах и т.д.
Специфика операций, условия эксплуатации и функциональное назначение мобильного робота определяют его конструктивные особенности, степень сложности системы управления, массогабаритные характеристики и состав специального оборудования.
К мобильному роботу предъявляются следующие общие требования:
– робот должен иметь высокие подвижность и проходимость в городских условиях, внутри зданий и сооружений, в зонах разрушений, на пересеченной местности, как на твердых гладких покрытиях, так и на деформируемых грунтовых основаниях;
– робот должен надежно действовать как в неподготовленных естественных условиях, так и в среде, специально приспособленной для обитания человека (внутри домов, в транспортных коммуникациях), вписываться в городские транспортные потоки или двигаться в составе транспортных колонн;