Смекни!
smekni.com

Разработка программного обеспечения сенсорной системы мобильной платформы iRobot Create (стр. 5 из 13)

– системы, определяющие различные физико-химические свойства внешней среды и ее объектов;

– системы, определяющие координаты местоположения робота и параметры его движения, включая его координаты относительно объектов внешней среды и усилия взаимодействия с ними.

К сенсорным системам первой группы относятся системы технического зрения и различного типа локаторы. Вторая группа сенсорных систем наиболее многообразна. Это измерители геометрических параметров, плотности, температуры, оптических свойств, химического состава и т.д. Третья группа сенсорных систем определяет параметры, относящиеся к самому роботу. Это измерители его географических координат в пространстве от спутниковых систем до использующих магнитное поле Земли, измерители угловых координат (гироскопы), измерители перемещения и скорости, в том числе и относительно отдельных объектов внешней среды вплоть до фиксации соприкосновения с ними.

В составе робота все эти сенсорные системы ориентированы на обслуживание двух исполнительных систем – передвижения и манипуляции.

Это определяет и основные требования к сенсорным системам – дальность действия, точность, быстродействие и т.д.

Сенсорные системы, используемые в системах передвижения робота, подразделяются на системы, обеспечивающие навигацию в пространстве и системы, обеспечивающие безопасность движения (предотвращение столкновений с препятствиями и опрокидываний на уклонах, попадания в недопустимые для робота внешние условия и т.п.).

Сенсорные системы, обслуживающие манипуляторы, тоже образуют две подгруппы: системы, входящие в контур управления движением манипулятора, и системы, очувствления его рабочего органа. В число последних систем часто входят размещенные у рабочего органа манипулятора системы технического зрения и измерители усилий.

Важным параметром сенсорных систем является дальность действия. По этому показателю сенсорные системы роботов можно разделить на контактные, ближнего, дальнего и сверхдальнего действия.

Контактные сенсорные системы применяются для очувствления рабочих органов манипуляторов и корпуса (бампера) мобильных роботов. Они позволяют фиксировать контакт с объектами внешней среды (тактильные сенсоры), измерять усилия, возникающие в месте взаимодействия (силомоментные сенсоры), определять проскальзывание объектов при их удержании захватным устройством. Контактным сенсорным системам свойственна простота, но они накладывают существенные ограничения па динамику и прежде всего на быстродействие управления роботом.

Тактильные сенсоры помимо получения информации о контакте применяются и для определения размеров объектов (путем их ощупывания) [13]. Они реализуются с помощью концевых выключателей, герметизированных магнитоуправляемых контактов, на основе токопроводящей резины ("искусственная кожа") и т.д. Важным требованием, предъявляемым к этим устройствам, является высокая чувствительность (срабатывание при усилии в единицы и десятки грамм), малые габариты, высокая механическая прочность и надежность.

Сенсорные системы ближнего действия обеспечивают получение информации об объектах, расположенных в непосредственной близости от рабочего органа манипулятора или корпуса робота, т.е. на расстояниях, соизмеримых с их размерами. К таким системам относятся оптические локаторы, дальномеры, дистанционные измерители плотности грунта и т.п. Такие бесконтактные устройства технически сложнее контактных, но позволяют роботу выполнять задание с большей скоростью и заранее выдавать информацию о различных объектах до соприкосновения с ними.

Сенсорные системы дальнего действия служат для получения информации о внешней среде в объеме всей рабочей зоны манипуляторов роботов и окружающей среды мобильного робота.

Сенсорные системы сверхдальнего действия применяются главным образом в мобильных роботах. К ним относятся различные навигационные системы, локаторы и другие сенсорные системы соответствующей дальности действия. Эти устройства находят применение и в стационарных роботах при работе с подвижными объектами, чтобы заранее предвидеть их появление в рабочей зоне.

В бесконтактных сенсорных системах для получения требуемой информации используются излучаемые ими специальные сигналы (оптические, радиотехнические, ультразвуковые и т.д.) и естественные излучения среды и ее объектов. В зависимости от этого различают активные и пассивные сенсорные системы. Активные сенсорные системы имеют передатчик, излучающий первичный сигнал, и приемник, регистрирующий прошедший через среду прямой сигнал или вторичный сигнал, отраженный от объектов среды. Пассивные системы имеют, естественно, только приемное устройство, а роль излучателя играют сами объекты внешней среды. Поэтому пассивные сенсорные системы обычно технически проще и дешевле активных, но менее универсальны. Для некоторых применений важна также скрытность действия пассивных систем. Заметим, что все органы чувств человека являются пассивными. Однако у некоторых животных (летучие мыши, дельфины), поскольку подобные системы и, прежде всего, зрение не обеспечивают их необходимой информацией, существуют и активные сенсорные системы.

Наконец, сенсорные системы роботов можно разделить на системы с фиксированным направлением восприятия и с переменным (сканирующие).

В настоящее время для очувствления роботов наиболее широкое применение получили системы технического зрения, локационные, силомоментные и тактильные.

2.2 Датчики роботов и их интерфейсы

2.2.1 Датчики соударений и наклона

Как правило, датчик соударений представляет собой выключатель, подающий информацию логического типа. Выключатель может находиться в одном из двух положений - разомкнутом или замкнутом. Может показаться, что эту информацию легко преобразовать для использования в программе.

В физическом смысле датчики соударений представляют собой выключатели концевого типа, или кнопки [14].

Они используются в качестве бамперов мобильных роботов на колесах, а также для остановки вращения оси, пришедшей в положение соприкосновения с ограничительным упором.

На рисунке 2.1 представлены схемы интерфейса для датчиков такого типа.

Как правило, в состоянии покоя выключатель находится в разомкнутом положении, но это необязательно. Важным является то, что, когда датчик находится в состоянии покоя, в центр управления подается верхний уровень напряжения, определяемый нагрузочным резистором. Это необходимо по двум причинам. Первая заключается в потребляемом токе, так как предполагается использование датчика только в определенные моменты, а вторая – в том, что резистор зачастую устанавливается на плате управления, вблизи физических входов процессора.

Рисунок 2.1 – Интерфейс для датчика соударений

У этих датчиков имеется серьезный недостаток: контакт не замыкается сразу. Появляется эффект дребезга контакта, который может быть неправильно интерпретирован центром управления. Решение этой проблемы заключается во введении в программу достаточно длительной задержки, перекрывающей интервал времени дребезга контакта, между двумя интервалами времени чтения этих входов. Такое решение используется в программах, имеющих узел реального времени.

Датчики наклона предназначены для использования на пересеченной местности, но не просто найти модель, указывающую наклон с большой точностью до двух градусов наклона и более.

Положение датчика очень важно во избежание получения ложной информации. Малейшее ускорение робота вызывает срабатывание датчиков. Необходимо установить несколько датчиков для проверки истинности полученной информации и дождаться остановки робота для прочтения их значения.

Интерфейсы датчиков наклона идентичны интерфейсам, предназначенным для датчиков соударений.

2.2.2 Оптические датчики

Оптические датчики включают в себя фоторезисторы, фототранзисторы, фотодиоды, пироэлектрические датчики и видеокамеры. Выбор того или иного типа зависит от таких параметров, как длина волны оптического спектра излучения или скорость считывания показаний датчика. Длиной волны определяется цвет источника света, который может меняться от ультрафиолетового до инфракрасного, проходя через видимую область спектра. На рисунке 2.2 показаны области известных источников света.

Рисунок 2.2 – Длины волн оптического спектра излучений

Время срабатывания представляет собой важный фактор времени расчета для подтверждения информации. Фотодиоды и фототранзисторы являются самыми быстрыми, а фоторезисторы и видеокамеры - более медленными.

Эти датчики могут оснащаться как простыми электронными интерфейсами подобно датчикам соударений, так и сложными интерфейсами, необходимыми, например, для видеокамеры. Данные, получаемые от датчика, могут быть аналоговыми или цифровыми в зависимости от выбранного интерфейса. Для улучшения чувствительности при конкретном применении может понадобиться дополнительный источник света. Например, кодированное ИК-сообщение информирует робот-пылесос о местонахождении разъема для зарядки батареи.

Фоторезистор представляет собой полупроводниковый резистор, сопротивление которого зависит от освещенности, при уменьшении которой его сопротивление увеличивается. Очень просто изготовить интерфейс для данного компонента с аналоговым входом для подключения платы управления. Достаточно всего одного резистора в паре с фоторезистором. При помощи резистора мы создаем делитель напряжения, выходное значение которого зависит от освещенности (рис. 2.3).