Смекни!
smekni.com

Центральный процессор персонального компьютера (стр. 3 из 4)

Бит d кода операции (direction - направление) определяет, по какому адресу записывается результат операции (при d = 1 – в регистр reg, при d = 0 – в регистр или память, адресуемые полем r/m).

Подобный формат широко используется для разнообразных арифметических и логических команд.


4. Одноадресная команда с постбайтом адресации

Рис.2.4. Одноадресная команда с постбайтом адресации

В отличие от предыдущего формата, среднее поле постбайта адресации является расширением кода операции (Е – Extended).

Подобный формат используется, во-первых, для однооперандных команд (например, INC, DEC, NEG – negative – изменение знака, NOT – инвертирование) и, во-вторых, для двухоперандных команд, в которых один из операндов адресуется неявно (например, MUL/IMUL – умножение, DIV/IDIV – деление, в которых один из операндов является аккумуляторным, а также команды сдвигов, в которых счетчик числа сдвигов адресуется неявно регистром CL).

На рис. 2.2 приведена схема работы центрального процессора.

Где:

ВШУ, ВШД - внутренняя схема управления, данных;

РОН - регистр общего назначения;

АЛУ - арифметико-логическое устройство;

А - аккумулятор;

БВПК - блок восстановления последовательности команд;

сх1...схN (N=2n) - схемы выработки управляющего сигнала (не регистр);

ДшОп - Дешифратор операций;

УВПК - устройство восстановления последовательности команд;

А1, А2 - операнды;

Рез - Результат операции;

Вып - флажок выполнено/не выполнено;

РгКв - регистр команд (выход);

КОп - Код операции;

УУ - устройство управления;

РгК - регистр команд;

КОп - Код операции;

БРК - блок распределения команд;

УРК - устройство распределения команд;



СчАК - счетчик адреса команд (+δ - прибавляет по байту);

БРА, БРД - буферные регистры адреса, данных;

ЗУ - запоминающее устройство;

БРАЗУ, БРДЗУ - буферные регистры адреса, данных запоминающего устройства;

Согласно данной схеме Рабочий цикл Центрального процессора имеет следующий вид

Шаги 1-5: MOV(СчАК,РгКi);

Шаги 6-10: MOV(А1,РгК[А1]i);

Шаги 11-15: MOV(А2,РгК[А2]i);

Шаг 16: PARBEGIN

16.1: УРК(РгКi,РгКАЛУi);

16.2: ДшОп(РгКi-1);

16.3: выполнение Опi-2;

16.4: УВПК(РгКвi-3);

PAREND;

Шаги 17-22: MOV(РгКв[Рез]i-4,[А2]);

Шаг 23: СчАК + δ;

Шаг 24: → Шаг 1.

Где:

Оп - операция;

MOV - "проход", введено для сокращения, каждый MOV означает 5 соответствующих шагов:

1. БРА := А1;

2. БРАЗУ := БРА;

3. БРДЗУ := [БРАЗУ];

4. БРД := БРДЗУ;

5. [А2] := БРД.

- то, что стоит в кв. скобках [] означает, что берется не А2, а значение по адресу А2;

- индексы i-1, i-2, i-3 и т.д. означают, что берется предыдущая команда; предпредыдущая и т.п. (которая уже прошла обработку на предыдущем блоке);

-шаги алгоритма 16.1, 16.2, 16.3 и 16.4 выполняются ПАРАЛЛЕЛЬНО

3.ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЦЕНТРАЛЬНЫХ ПРОЦЕССОВ

3.1. Процессоры семейства AMDPhenomII

Главное отличие новых процессоров семейства AMDPhenomII от процессоров семейства AMDPhenom заключается в том, что они выполнены по 45-нм техпроцессу с применением технологии S0I, в то время как процессоры семейства AMDPhenom выполняются по 65-нм техпроцессу.

Точно так же, как и процессоры семейства AMDPhenom, они представляют собой истинно многоядерные процессоры, то есть все ядра процессора выполнены на одном кристалле.

Среди нововведений, реализованных в новых процессорах AMDPhenomII, можно также отметить усовершенствованную технологию AMDCool'&'Quiet 3.0. Она объединяет в себе ряд функций, позволяющих снизить энергопотребление процессора в те моменты, когда он недозагружен, а также предотвратить перегрев процессора.

При анонсе нового процессора семейства AMDPhenomIIХ4 компания AMD указывала и на другие преимущества в сравнении с предыдущим семейством. В частности, отмечалось, что новые процессоры выполняют больше инструкций за такт (InstructionPerClock, IPC).

Семейство процессоров AMDPhenomII в настоящее время включает три серии: AMDPhenomII Х4 900, AMDPhenomII Х4 800 и AMDPhenomII ХЗ 700.

Процессоры серии AMDPhenomII Х4 900

Сейчас в 900-ю серию процессоров входят две четырехъядерные модели: AMDPhenomII Х4 940 и AMDPhenomIIХ4 920. Каждое ядро процессора AMDPhenomIIХ4 900-й серии имеет выделенный L-2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 6 Мбайт.

Процессор AMDPhenomII Х4 940 имеет тактовую частоту 3,0 ГГц, а процессор AMDPhenomII Х4 920 — 2,8 ГГц. Эти процессоры оснащены интегрированным двухканальным контроллером памяти DDR2 и поддерживают память DDR2 667/800/1066.

Процессоры AMDPhenomII Х4 940 и AMDPhenomIIХ4 920 совместимы с разъемами SockeАМ2+/АМ2 и поддерживают шину HyperTransport 3.0 на скорости до 3600 МГц (двусторонняя) пропускной способностью до 16 Гбайт/с. Оба процессора имеют TDP 125 Вт.

Разница между моделями процессоров AMDPhenomIIХ4 940 и AMDPhenomIIХ4 920 заключается не только в тактовой частоте, но еще и том, что процессор AMDPhenomII Х4 940 имеет разблокированный множитель, что позволяет реализовывать его эффективный разгон. Вообще, если говорить о разгонном потенциал процессора AMDPhenomII Х4 940, то, по сообщениям независимых источников в Интернете, он достаточно большой. Так, есть данные что применение жидкого азота для охлаждения процессора позволило достичь рекордной тактовой частоты в 6 ГГц, а посредством обычного воздушного охлаждения этот процессор легко разгоняется до 4 ГГц.

Добавим также, что в скором времени ожидается появление процессора AMDPhenomIIХ4 910 которым будет иметь тактовую частоту 2,6 ГГц.

Процессоры серии AMDPhenomII Х4 800

На данный момент 800-я серия процессоров включает всего одну модель четырехъядерного процессора —AMDPhenomII Х4 810. Однако в скором времени ожидается появление еще одной модели AMDPhenomIIХ4 805.

Отличие процессоров 800-й серии от процессоров 900-й серии заключается в урезанном размере кэша L3 и в том, что в процессорах 800-й серии реализован контроллер памяти, поддерживающий память как DDR2, так и DDR3. Кроме того, процессоры 800-й серии совместимы как с разъемам SocketAM2+/AM2 так и с разъемом SocketAM3.

Каждое ядро процессора AMDPhenomIIX4 810 имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 4 Мбайт. Процессор AMDPhenomII Х4 810 работает с тактовой частотой 2,6 ГГц. Он оснащен интегрированным двухканальным контроллером памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллером памяти DDR3 (поддерживается память DDR3-800/1066/1333). TDP процессора составляет 95 Вт.

Процессоры серии AMDPhenomII ХЗ 700

В настоящее время в 700-ю серию процессоров входят две модели: AMDPhenomII ХЗ 720 и AMDPhenomII ХЗ 710. Все процессоры 700-й серии являются трехъядерными. Каждое ядро процессора AMDPhenomII Х3 720 и AMDPhenomII ХЗ 710 имеет выделенный L2-кэш размером 512 Кбайт, а разделяемый между всеми ядрами L3-кэш имеет размер 6 Мбайт.

Как и процессоры 800-й серии, процессоры 700-й серии имеют интегрированный двухканальный контроллер памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллер памяти DDR3 (поддерживается память DDR3-800/1066/1333).

Процессор AMDPhenomII ХЗ 720 работает на тактовой частоте 2,8 ГГц, а процессор AMDPhenomII ХЗ 710 — на тактовой частоте 2,6 ГГц. Еще одно различие между AMDPhenomII ХЗ 720 и AMDPhenomII ХЗ 710 заключается в том, что в модели AMDPhenomII ХЗ 720 разблокирован множитель, а следовательно, его можно легко разгонять.

3.2. Процессоры семейства IntelCorei7

Рис.3.1. процессор Corei7-965

Процессоры семейства Nehalem, как и полагается первопроходцам новой платформы, будут представлены на рынке высокоуровневыми четырехъядерными решениями на базе ядра Bloomfield, а уже через год пополнятся доступными моделями, которые займут место прежних Core 2 Duo.

Процессор Nehalem

Новые процессоры, получившие название Core i7, изготовляются по технологическим нормам 45 нм с применением high-k диэлектрика и металлического затвора транзисторов, но в отличие от своих предшественников все четыре ядра расположены на одном кристалле. Если помните, Core 2 Quad состоит из двух ядер Core 2 Duo, объединенных в одном корпусе. Кроме того, процессоры Nehalem содержат кэш-память третьего уровня объемом 8 МБ, встроенный трехканальный контроллер памяти DDR3 и контроллер шины Quick Path Interconnect (QPI), которые потребовали значительное увеличение контактов – до 1366, из-за чего размеры CPU нового поколения стали больше и по форме он уже напоминает прямоугольник, а не квадрат как у Core 2. Естественно, ни о какой совместимости разъемов речи не идет.

Кстати, в название Core i7 отражено поколение процессоров, использующих архитектуру P6. Всего на данный момент доступно три модели новых CPU: Core i7-965 Extreme Edition, Core i7-940 и Core i7-920. Главное отличие между ними заключается в рабочей частоте ядер и шины QPI, которая пришла на смену "старушке" FSB, аналогично технологии HyperTransport от AMD. Естественно, экстремальная версия ориентирована на энтузиастов и оверклокеров, имеет более высокую частоту и разблокированный на повышение множитель. Также для Core i7-965 Extreme Edition характерно большее количество множителей для памяти, частота которой формируется путем их умножения на частоту тактового генератора (опорной частоты шины QPI или QPI bclk), равную в номинале 133 МГц. Частоты ядер, шины QPI и кэша L3 также формируются путем умножения определенных коэффициентов на опорную частоту. Если же разгонять процессор методом поднятия QPI bclk, то частоты всех блоков и памяти поднимутся в зависимости от их множителей. Обычные Intel Core i7 будут уже не столь дружелюбны к оверклокерам, но, возможно, со временем данную проблему все-таки решат.

Еще одним новшеством семейства Nehalem стало использование технологии Hyper-Threading (или Simultaneous Multithreading – SMT, технология "одновременной мультипоточности"), от которой отказались при переходе на архитектуру Core. Теперь же каждый процессор Core i7 определяется как восемь логических ядер, что может существенно повысить быстродействие оптимизированных под многопоточность приложений.