Исследования по технологии производства MRAM ведут такие известные компании, как IBM, Infineon, Motorola (Freescale), Toshiba, NEC, Sypress. Все они весьма серьезные фирмы на рынке электроники, и подозревать их в легкомысленной трате денег на бесперспективные исследования не стоит. По мнению специалистов компании Northen Lights semiconductor Corp. [9], MRAM обладает рядом преимуществ перед всеми остальными типами памяти, в том числе перед FRAM. (Компания производит ряд специальных изделий, оснащенных встроенной энергонезависимой памятью, в частности микроконтроллеры и RFID-карты.) Достоинства названной технологии, по оценке специалистов компании, отражены в таблице 1.
Однако производство MRAM-памяти до сих пор не вышло на уровень массового, серийного, хотя периодически делаются анонсы о разработке новых типов MRAM-памяти различными компаниями. Совсем недавно фирма Freescale Semiconductor сообщила о начале выпуска чипов нового типа MRAM-памяти, пригодных для коммерческого использования.
Ferroelectric RAM (FeRAM) – это тип сегнетоэлектрической энергонезависимой памяти, который может стать альтернативой DRAM- и SRAM-памяти.
Впервые работающий образец FeRAM был получен еще в 1992 году в лабораториях компании Symetrix. С тех пор такая память вызывает пристальное внимание со стороны индустрии. Достаточно сказать, что с 1992-го по 2002 год по данной теме было выдано свыше 360 патентов, что свидетельствует о всевозрастающем интересе к этой нише сегнетоэлектриков и, главное, к их практическому применению.
Основными элементами ячеек FeRAM памяти являются сегнетоэлектрические транзисторы (ferroelectric transistor) и конденсаторы (ferroelectric capacitor), обладающие переменными ферромагнитными свойствами.
По принципу действия ячейки FeRAM-памяти во многом схожи с ячейками обычной DRAM-памяти. Напомним, что DRAM-память представляет собой массив ячеек, состоящих из одного конденсатора и управляющего транзистора (схема 1T-1C). Размер ячейки памяти зависит от технологического процесса производства. К примеру, при использовании 90-нм техпроцесса размер ячейки памяти составляет 0,22 мкм2. Данные в ячейке DRAM-памяти ассоциируются с наличием или отсутствием заряда в конденсаторе.
Ячейка FeRAM-памяти подобна ячейке DRAM-памяти в том смысле, что данные в ней ассоциируются с наличием или отсутствием заряда на конденсаторе. Разница заключается в особых свойствах диэлектрика конденсатора, который в FeRAM-памяти обладает ферромагнитными свойствами. Под воздействием приложенного к конденсатору напряжения диэлектрик поляризуется, но после исчезновения напряжения он обладает остаточной поляризацией, что позволяет конденсатору удерживать заряд при отсутствии внешнего питания. Для того чтобы разрядить конденсатор, необходимо приложить к нему отрицательное напряжение. Таким образом, в ферромагнитных диэлектриках зависимость поляризации от приложенного напряжения неодинакова при увеличении и уменьшении напряжения. Это свойство диэлектриков принято изображать в виде петли гистерезиса.
На данный момент выделяют три основных типа ячеек FeRAM-памяти: одноконденсаторная ячейка 1С FeRAM, называемая еще SFRAM (Statically Read Ferroelectric Random Access Memory – аналог SRAM); наиболее распространенная транзисторно-конденсаторная ячейка 1Т-1С FeRAM и наиболее стабильная из всех вышеперечисленных двойная ячейка 2T-2C FeRAM. [6]
К сожалению, ни один из разрабатываемых сегодня подходов не лишен недостатков, и пока еще память, изготовленная по новым технологиям, не может полностью и повсеместно заменить «старые» варианты. Имеющиеся сегодня образцы ИС не являются идеальной и универсальной памятью, сочетающей лучшие качества SRAM (высокая скорость работы и произвольный доступ), Flash и DRAM (низкое потребление и очень высокая плотность ячеек). Но мечта многих разработчиков стала понемногу приобретать реальные очертания. Вот только момент ее окончательного воплощения в конкретный продукт откладывается на неопределенное время.
Вероятно, разнообразие требований, предъявляемых к электронной аппаратуре, наложит свой отпечаток и на применимость тех или иных типов энергонезависимой памяти. Будут существовать области электроники, где предпочтение отдается, например, быстродействию, но будут также области, где важнее энергопотребление. Скорее всего, еще долгое время не удастся разработать тот единственный тип технологии, который позволил бы производить память со всеми желаемыми свойствами идеального универсального чипа и при этом имел бы низкую стоимость.
Ни одна из новых технологий по объемам продаж в ближайшие несколько лет не сможет представить серьезной конкуренции Flash. Гигантская емкость, очень низкое энергопотребление и все продолжающееся сокращение времени доступа делают этот тип памяти незаменимым. Тем не менее Flash не сможет подменить собой все остальные типы и стать ни оперативной памятью данных в измерительных приборах, ни программной памятью компьютеров в силу присущих ей ограничений по числу обращений и по возможностям адресации. Она лучше всего подходят для записи и хранения больших и редко обновляющихся массивов информации, и ее не рекомендуется применять в устройствах с частой перезаписью.
Ближайшим конкурентом Flash сегодня является память типа FRAM в традиционном интегральном исполнении, но имеющиеся серийные образцы пока еще сильно отстают от Flash. Причем лучшие образцы ИС в обеих технологиях по объему памяти отличаются более чем в 1000 раз, по удельному энергопотреблению почти во столько же раз, а по времени доступа микросхемы Flash и FRAM почти одинаковы. Единственной преимущество FRAM — возможность произвольной адресации. Число циклов записи FRAM хоть и велико, но тоже, как и у Flash, конечно. Разрушающее чтение и необходимость в восстановлении данных ограничивают скоростные параметры данного типа памяти. Разумеется, это не означает, что данная технология тупиковая ветвь развития энергонезависимой памяти. ИС FRAM несомненно найдут свою нишу на рынке электронных приборов хотя бы потому, что они почти идеально подходят для взаимодействия с 8-разрядными микроконтроллерами, поскольку имеют примерно равные скорости работы. К тому же эту память характеризует относительно низкое потребление. (В сравнении с существующими серийными ИС MRAM, например, оно меньше примерно в 10 раз!)
Магнито-резистивная память MRAM быстрее всех остальных конкурентов и не имеет ограничений на число обращений, но энергопотребление и стоимость не позволяют применять ее в массовых товарах. Если бы эра электронных компонентов, начавшаяся с появлением IBM PC, не сменилась эрой мобильной и портативной электроники с батарейным питанием, то перспективы MRAM виделись бы более радужными, чем теперь.
Сейчас экономичность – одно из важнейших качеств, каким должен обладать претендент на место универсальной памяти. Конечно, MRAM найдется место в аппаратуре и, прежде всего, в стационарных высокоскоростных устройствах с обычными источниками питания, таких как оптоволоконные линии связи, радиолокация, научные исследования в ядерной физике и т. п., но массовым продуктом она пока быть не сможет.
1. Валентинова М. Полупроводниковая энергонезависимая память. На перепутье // Электроника. Наука, технология, бизнес. 2003.
2. Нечаев Г. Наступление наноэры. Материалы сайта http://www.interself.ru/info/article.php?article_id=4.
3. Вихарев Л. Микросхемы энергонезависимой памяти: накануне революции // Компоненты и технологии. 2003.
4. Сообщениемеждународногокомитета International Technology Roadmap for Semiconductors (ITRS) http://www.itrs.net/papers.html.
5. Зайцев И. Сравнение новых технологий энергонезависимой памяти // Компоненты и технологии. 2004.
6. Эпоха гигантских эффектов. Сообщение сайта http://www.newsit.ru/hardware/id_25928.