Смекни!
smekni.com

Модель и моделирование (стр. 2 из 3)

Модельлогическая, если она представима предикатами, логическими функциями.

Пример. Совокупность двух логических функций вида: z=x

y
x
y, p=x
y может служить математической моделью одноразрядного сумматора.

Модельигровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями).

Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i,j

n), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов (в средне- и долгосрочном плане штраф за сокрытие может оказаться намного более ощутимым). Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу aij=|i-j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая, бескоалиционная (формализуемые в математической теории игр понятия мы пока будем понимать содержательно, интуитивно).

Модельалгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле.

Модельструктурная, если она представима структурой данных или структурами данных и отношениями между ними.

Пример. Структурной моделью может служить описание (табличное, графовое, функциональное или другое) трофической структуры экосистемы. Постройте такую модель (одна из них была приведена выше).

Модельграфовая, если она представима графом или графами и отношениями между ними.

Модельиерархическая (древовидная), если представима некоторой иерархической структурой (деревом).

Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 10.2):


Рис. 10.2. Модель иерархической структуры

Модельсетевая, если она представима некоторой сетевой структурой.

Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.

Сетевая модель (сетевой график) строительства дома дана на рис. 10.3.

Рис. 10.3. Сетевой график строительства работ

Две работы, соответствующие дуге 4-5, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой длительностью 3+5=8, либо ввести на одной дуге фиктивное событие, тогда дуга 4-5 примет вид.

Модель языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.

Пример. Правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модельM словообразования: <zi><=<pi>:=<bi>+<si>. При bi - "рыб(а)", si - "н(ый)", получаем по этой моделиpi - "рыбный", zi - "приготовленный из рыбы".

Модельвизуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Пример. На экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе-тренажере по обучению работе на клавиатуре.

Модельнатурная, если она есть материальная копия объекта моделирования.

Пример. Глобус - натурная географическая модель земного шара.

Модельгеометрическая, графическая, если она представима геометрическими образами и объектами.

Пример. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм.

Модельклеточно-автоматная, если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Это "мир" некоторого автомата, исполнителя, структуры. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Такие клеточные поля могут быть вещественно-энерго-информационными. Законы эволюции локальны, т.е. динамика системы определяется задаваемым неизменным набором законов или правил, по которым осуществляется вычисление новой клетки эволюции и его материально-энерго-информационной характеристики в зависимости от состояния окружающих ее соседей (правила соседства, как уже сказано, задаются). Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение. В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.

Клеточные автоматы (поля) могут быть одномерными, двумерными (с ячейками на плоскости), трехмерными (с ячейками в пространстве) или же многомерными (с ячейками в многомерных пространствах).

Пример. Классическая клеточно-автоматная модель - игра "Жизнь" Джона Конвея. Она описана во многих книгах. Мы рассмотрим другую клеточно-автоматную модель загрязнения среды, диффузии загрязненителя в некоторой среде. 2D-клеточный автомат (на плоскости) для моделирования загрязнения среды может быть сгенерирован следующими правилами:

  • плоскость разбивается на одинаковые клетки: каждая клетка может находиться в одном из двух состояний: состояние 1 - в ней есть диффундирующая частица загрязнителя, и состояние 0 - если ее нет;
  • клеточное поле разбивается на блоки 2×2 двумя способами, которые будем называть четным и нечетным разбиениями (у чётного разбиения в кластере или блоке находится четное число точек или клеток поля, у нечетного блока - их нечетное число);
  • на очередном шаге эволюции каждый блок четного разбиения поворачивается (по задаваемому правилу распространения загрязнения или генерируемому распределению случайных чисел) на заданный угол (направление поворота выбирается генератором случайных чисел);
  • аналогичное правило определяется и для блоков нечетного разбиения;
  • процесс продолжается до некоторого момента или до очищения среды.

Пусть единица времени - шаг клеточного автомата, единица длины - размер его клетки. Если перебрать всевозможные сочетания поворотов блоков четного и нечетного разбиения, то видим, что за один шаг частица может переместиться вдоль каждой из координатных осей на расстояние 0, 1 или 2 (без учета направления смещения) с вероятностями, соответственно, p0=1/4, p1=1/2, p2=1/4. Вероятность попадания частицы в данную точку зависит лишь от ее положения в предыдущий момент времени, поэтому рассматриваем движение частицы вдоль оси х (y) как случайное.

На рис. 10.4 - фрагменты работы программы клеточно-автоматной модели загрязнения клеточной экосреды (размеры клеток увеличены).
Рис. 10.4. Окно справа - состояние клеточного поля (в верхнем - исходное, слабо загрязненное, в нижнем - после 120 циклов загрязнения), в левом верхнем углу - "Микроскоп", увеличивающий кластер поля, в середине слева - график динамики загрязнения, внизу слева - индикаторы загрязнения

Модельфрактальная, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, можно считать, что плотность не зависит от размера. Например, при увеличении R до 2R масса увеличится в R2 раз (круг) и в R3 раз (шар), т.е. M(R)~Rn (связь массы и длины), n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Плотность его