Если объект (система) удовлетворяет соотношению M(R)~Rf(n), где f(n)<n, то такой объект называется фрактальным. Его плотность не будет одинаковой для всех значений R, а масштабируется так:
Так как f(n)-n<0, то плотность фрактального объекта уменьшается с увеличением размера, а ρ(R) является количественной мерой разряженности, ветвистости (структурированности) объекта.
Пример. Пример фрактальной модели - множество Кантора. Рассмотрим [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, назывемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 10.5)
Рис. 10.5. Множество Кантора для 3-х делений
Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3≈0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка. Фрактальные объекты самоподобны, если они выглядят одинаково в любом пространственном масштабе, масштабно инвариантны, фрагменты структуры повторяются через определенные пространственные промежутки. Поэтому они очень хорошо подходят для моделирования нерегулярностей, так как позволяют описывать (например, дискретными моделями) эволюцию таких систем для любого момента времени и в любом пространственном масштабе.
Самоподобие встречается в самых разных предметах и явлениях.
Пример. Самоподобны ветки деревьев, снежинки, экономические системы (волны Кондратьева), горные системы.
Фрактальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели, когда имеем дело с нелинейностью (многовариантностью путей развития и необходимостью выбора) и недетерминированностью, хаотичностью и необратимостью эволюционных процессов.
Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений его подсистем и элементов, а не от его физической природы.
Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.
Границы между моделями различного типа или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.
Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделированияС: М=<O, Z, A, B, C>.
Основные свойства любой модели:
- целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
- конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
- упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
- приблизительность - действительность отображается моделью грубо или приблизительно;
- адекватность - модель должна успешно описывать моделируемую систему;
- наглядность, обозримость основных ее свойств и отношений;
- доступность и технологичность для исследования или воспроизведения;
- информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
- сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
- полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
- устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
- целостность - модель реализует некоторую систему (т.е. целое);
- замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
- адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
- управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
- эволюционируемость - возможность развития моделей (предыдущего уровня).
Жизненный цикл моделируемой системы:
- сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
- проектирование структуры и состава моделей (подмоделей);
- построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
- исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
- исследование адекватности, устойчивости, чувствительности модели;
- оценка средств моделирования (затраченных ресурсов);
- интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
- генерация отчетов и проектных (народно-хозяйственных) решений;
- уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.
Моделирование - метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.
Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".
Моделирование (в значении "метод", "модельный эксперимент") рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом (это называется простым или обычным экспериментом), а над копией (заместителем) оригинала. Здесь важен изоморфизм систем (оригинальной и модельной) - изоморфизм, как самой копии, так и знаний, с помощью которых она была предложена.
Модели и моделирование применяются по основным направлениям:
- обучение (как моделям, моделированию, так и самих моделей);
- познание и разработка теории исследуемых систем (с помощью каких-либо моделей, моделирования, результатов моделирования);
- прогнозирование (выходных данных, ситуаций, состояний системы);
- управление (системой в целом, отдельными подсистемами системы), выработка управленческих решений и стратегий;
- автоматизация (системы или отдельных подсистем системы).
Задачи и упражнения
- В последнее время наиболее актуальной проблемой в экономике стало воздействие уровня налогообложения на хозяйственную деятельность. В ряду прочих принципов взимания налогов важное место занимает вопрос о той предельной норме, превышение которой влечет потери общества и государства, несоизмеримые с текущими доходами бюджета. Определение совокупной величины налоговых сборов таким образом, чтобы она, с одной стороны, максимально соответствовала государственным расходам, а с другой, оказывала минимум отрицательного воздействия на деловую активность, относится к числу главных задач управления государства. Опишите, какие, на ваш взгляд, параметры необходимо учесть в модели налогообложения хозяйственной деятельности, соответствующей указанной цели. Составьте простую (например, рекуррентного вида) модель сбора налогов, исходя из налоговых ставок, изменяемых в указанных диапазонах: налог на доход - 8-12 %, налог на добавленную стоимость - 3-5 %, налог на имущество юридических лиц - 7-10%. Совокупные налоговые отчисления не должны превышать 30-35% прибыли. Укажите в этой модели управляющие параметры. Определите одну стратегию управления с помощью этих параметров.
- Заданы числовой - xi, i=0, 1, ..., n и символьный - yi, i=0, 1, ..., m массивы X и Y. Составить модель стекового калькулятора, который позволяет осуществлять операции:
- циклический сдвиг вправо массива X или Y и запись заданного числа в x0 или символа операции - y0 (в "верхушку стека" X(Y)) т.е. выполнение операции "вталкивание в стек";
- считывание "верхушки стека" и последующий циклический сдвиг влево массива X или Y - операция "выталкивания из стека";
- обмен местами x0 и x1 или y0 и y1;
- "раздваивание верхушки стека", т.е. получение копии x0 или y0 в x1 или y1;
- считывание "верхушки стека" Y (знака +, -, * или /), затем расшифровка этой операции, считыавние операндов операций с "верхушки" X, выполнение этой операции и помещение результата в "верхушку" X.
- Известна классическая динамическая модель В.Вольтерра системы типа "хищник-жертва", являющейся моделью типа "ресурс-потребление". Рассмотрим клеточно-автоматную модель такой системы. Алгоритм поведения клеточного автомата, моделирующего систему типа "хищник-жертва", состоит из следующих этапов:
- задаются начальные распределения хищников и жертв, случайно или детерминированно;
- определяются законы "соседства" особей (правила взаимоотношений) клеток, например, "соседями" клетки с индексами (i,j) считаются клетки (i-1,j), (i,j+1), (i+1,j), (i,j-1);
- задаются законы рождаемости и смертности клеток, например, если у клетки меньше двух (больше трех) соседей, она отмирает "от одиночества" ("от перенаселения").
Цель моделирования: определение эволюции следующего поколения хищников и жертв, т.е., используя заданные законы соседства и динамики дискретного развития (время изменяется дискретно), определяются число новых особей (клеток) и число умерших (погибших) особей; если достигнута заданная конфигурация клеток или развитие привело к исчезновению вида (цикличности), то моделирование заканчивается.