Если
> , то сразу переходим к шагу сжатия и находим точку из соотношения:Если
< , то сначала заменим точку на точку , а затем произведем сжатие. Тогда точку найдем из соотношения (см. рис.4):Коэффициенты
в вышеприведенной процедуре являются соответственно коэффициентами отражения, сжатия и растяжения. Нелдер и Мид рекомендуют братьРекомендация основана на результатах экспериментов с различными комбинациями значений. Эти значения параметров позволяют методу быть эффективным, но работать в различных сложных ситуациях.
В данной программе точка
является начальной точкой, затем в программе формируются точкиГде
- произвольная длина шага, а - единичный вектор.Обозначения, используемые в программе, в целом соответствуют обозначениям, приведенным в тексте.
Шаги этой процедуры представлены в виде блок-схемы алгоритма на рисунке 5.
Program Nidelermid;
Uses Crt;
Var n, i, j, g, h: integer;
S: array[1..10,1..10] of real;
x, xh,xg,xl,xo,xr,xc,xe: array[1..10] of real;
f: array[1..10] of real;
shag, l: integer;
al,be,ga: real;
k, fh, fl,fg,fo,fr,FE,fc,s1,s2,sig: real;
label 620,1520,1700,1920,2060,2200, 1300, 1600, 1440,2220;
function z(x1,x2,x3,x4: REAL): real;
begin
Z:=100*(x2-x1*x1)*(x2-x1*x1)+(1-x1)*(1-x1);
inc(shag);
end;
begin
clrscr;
shag:=0;
g:=1;
h:=1;
l:=1;
Writeln('Simpleksniy method Nidlera mida');
Writeln('Function: F(x)=100(x1-x2^2)^2+(1-x1)^2');
Writeln('Vvedite chislo peremennih');
Readln(n);
Writeln('Vvedite nachalnoe pribligenie');
for j:=1 to n do
readln(s[1,j]);
Writeln('Vvedite dlinny shaga');
Readln(k);
for i:=2 to n+1 do
for j:=1 to n do
if j=i-1 then
s[i,j]:=s[1,j]+k
else s[i,j]:=s[1,j];
Writeln('Vvedite Alfa, beta, gamma');
readln(al, be, ga);
for i:=1 to n+1 do
begin
for j:=1 to n do x[j]:=s[i,j];
f[i]:=z(x[1],x[2],x[3],x[4]);
end;
620:
fh:=-0.00000000000000000001;
fl:=0.00000000000000000001;
for i:=1 to n+1 do
begin
if f[i]>fh then
begin
fh:=f[i];
h:=i;
end;
if f[i]<fl then
begin
fl:=f[i];
l:=i;
end;
end;
fg:=0.00000000000000000001;
for i:=1 to n+1 do
if i<>h then
if f[i]>fg then
begin
fg:=f[i];
g:=i;
end;
for j:=1 to n do
begin
xo[j]:=0;
for i:=1 to n+1 do
if i<>h then xo[j]:=xo[j]+s[i,j];
xo[j]:=xo[j]/n;
xh[j]:=s[h,j];
xg[j]:=s[g,j];
xl[j]:=s[l,j];
end;
for j:=1 to n do x[j]:=xo[j];
fo:=z(x[1],x[2],x[3],x[4]);
writeln('Vichisliaem centr tiagest 1120');
for j:=1 to n do
begin
xr[j]:=xo[j]+al*(xo[j]-xh[j]);
x[j]:=xr[j];
end;
fr:=z(x[1],x[2],x[3],x[4]);
writeln('Vipolniaetsia otragenie 1220', z(x[1],x[2],x[3],x[4]):3:5);
if fr<fl then goto 1300;
if fr>fg then goto 1600;
goto 1520;
1300:
for j:=1 to n do
begin
xe[j]:=ga*xr[j]+(1-ga)*xo[j];
x[j]:=xe[j];
end;
fe:=z(x[1],x[2],x[3],x[4]);
if fe<fl then goto 1440;
goto 1520;
1440:
for j:=1 to n do s[h,j]:=xe[j];
f[h]:=fe;
Writeln('Vipolnite rastiagenie 1480', z(x[1],x[2],x[3],x[4]):3:5);
goto 2060;
1520:
for j:=1 to n do s[h,j]:=xr[j];
f[h]:=fr;
writeln('Vipolnenie otragenia 1560');
goto 2060;
1600:
if fr>fh then goto 1700;
for j:=1 to n do xh[j]:=xr[j];
f[h]:=fr;
1700:
for j:=1 to n do
begin
xc[j]:=be*xh[j]+(1-be)*xo[j];
x[j]:=xc[j];
end;
fc:=z(x[1], x[2],x[3],x[4]);
if fc>fh then goto 1920;
for j:=1 to n do s[h,j]:=xc[j];
f[h]:=fc;
writeln('Vipolnenie sjatia 1880', fc:3:5);
goto 2060;
1920:
for i:=1 to n+1 do
begin
for j:=1 to n do
begin
s[i,j]:=(s[i,j]+xl[j])/2;
x[j]:=s[i,j];
end;
f[i]:=z(x[1], x[2],x[3],x[4]);
end;
Writeln('Vipolnenie redikcii 2040');
2060:
s1:=0;
s2:=0;
for i:=1 to n+1 do
begin
s1:=s1+f[i];
s2:=s2+f[i]*f[i];
end;
sig:=s2-s1*s1/(n+1);
sig:=sig/(n+1);
if sig<0.000000001 then goto 2220;
2200:
goto 620;
2220:
Writeln('Minimum naiden v tochke f=', z(x[1],x[2],x[3],x[4]):3:5);
for j:=1 to n do Writeln('x',j,' =',xl[j]:3:5);
Writeln('Kolichestvo vichisleniy ravno ', shag);
readln;
end.
1. M.J. Box, D.Davies and W.H.Swann, “Non-linear Optimization Techniques,” ICI Ltd Monograph No 5, Oliver and Boyd, 1969.
2. R.Hooke and T.A. Jeeves, “Direct search solution of numerical and statistical problem”, 212-219, 1961.