Федеральное агентство по образованию
Государственное образовательное учреждение высшего
профессионального образования
Самарский государственный технический университет
Факультет автоматики и информационных технологий
Кафедра информационно-измерительной техники
Расчетно-пояснительная записка
к курсовой работе Оптимизация прямого поиска для определения минимума функции n переменных методом Нелдера-Мида.
по курсуСистемы автоматического проектирования
НормоконтрольПетрова Т. А.
Руководитель работы Хавлин О.В.
Студент Бромберг Е.Е.
Группа 5-АИТ-5
Срок выполнения ____________________________
Работа защищена с оценкой___________
г. Самара 2008
Реферат
Пояснительная записка содержит 16страниц, 5 рисунков и 2 источника.
ЭКСТРЕМУМ ФУНКЦИИ, БАЗИСНАЯ ТОЧКА, СИМПЛЕКС, ОТРАЖЕНИЕ, РАСТЯЖЕНИЕ, СЖАТИЕ, ДЛИНА ШАГА, МЕТОД НЕЛДЕРА-МИДА.
В пояснительной записке изложены основы прямого поиска для определения минимума функции n переменных. Выбран метод оптимизации поиска Нелдера-Мида. В расчетной части метод Нелдера-Мида реализован программно, в среде TurboPascal, представлены блок схема алгоритма оптимизации, листинг программы.
СОДЕРЖАНИЕ | |
Введение……………………………………………………... 1 Метод Нелдера-Мида…………………………………...2 Блок –схема алгоритма…………………………………..3 Листинг программы……………………………………...4 Список используемой литературы……………………… | 4 5 9 10 16 |
ВВЕДЕНИЕ
На разработку методов прямого поиска для определения минимума функции n переменных было затрачено много усилий. Методы прямого поиска являются методами, в которых используются только значения функции. Один из наиболее надежных метод Нелдера-Мида, являющийся одним из самых эффективных, если
Рассмотрим функцию двух переменных. Ее линии постоянного уровня представлены на рис. 1. Линией постоянного уровня называется кривая в двухмерном сечении пространственных параметров ( в данном случае – в плоскости
Метод Нелдера-Мида является развитием симплексного метода Спендли, Хекста и Химсворта. Множество значений
Идея метода состоит в сравнении значений функции в
В данном методе симплекс перемещается с помощью трех основных операций: отражение, растяжение и сжатия. Рассмотрим основные шаги процедуры:
А. Найдем значения функции
в вершинах симплекса.
Б. Найдем наибольшее значение функции
В. Найдем центр тяжести всех точек, за исключением точки
И вычислим
Г. Удобнее всего начать перемещение от точки
Операция отражения иллюстрируется рис. 1. Если
Д. Сравним значения функции
1. Если
2. Если
3. Если
Е. Сравним значения функции
1. Если
Если
2. В этом случае