Смекни!
smekni.com

Лекции по Информатике 3 (стр. 5 из 24)

Отношение ширины к высоте равно 4 X 3.

Второй характеристикой служит степень градации цвета в каждом троеточии: от 2х до 16 млн. цветов.

Максимальная разрешающая способность зависит как от дисплея, так и от видеоадаптера.

В видеоадаптере находится видеопамять. Объём видеопамяти ограничивает разрешающую способность. Например, для хранения картинки (800 X 600 точек) с 256 цветами необходимо 480 Кб видеопамяти.

Функция видеоадаптера состоит в получении информации, записи её в видеопамять и регулярной посылке на дисплей содержания видеопамяти. Отдельной проблемой является отображение кинофильмов: здесь требуется большой объём данных (480 Кб на кадр) и быстрая обработка (24 кадра в секунду). Для обработки кинофильмов используется сжатие файлов и имеется 2 алгоритма:

  1. JPEG (хранится каждый кадр, при недостаточной обработке качество изображения улучшается)
  2. MPEG (хранятся различия между кадрами)

5.7. Принтеры

Предназначены для вывода информации на бумагу.

3 вида принтеров: матричный, струйный, лазерный.

В матричном вертикальный ряд металлических стержней двигается и ударяет по бумаге, отпечатывая ряды точек через ленту с краской.

Струйные работает также как и матричные, только вместо стержней используется распыление краски через отверстия.

Печать на лазерном принтере состоит из 4 этапов. Сначала лазерным лучом изображение наносится на барабан, затем к местам прохождения луча прилипает краска. Краска при прокатывании барабана переносится на бумагу. В конце путём нагрева краска закрепляется.

Процесс печати на матричном принтере имеет низкую цену.

Струйные принтеры дешевы сами по себе.

Лазерная печать самая качественная.

Матричные принтеры сильно шумят, печать на струйном принтере достаточно дорогая, лазерные принтеры дорого стоят.

5.8. Поколение микропроцессоров. Их работа

Микропроцессор является центром ПК, он проводит всю обработку информации.

Типы микропроцессоров различаются разрядностью шин.

Разрядность – количество одновременно передаваемых сигналов. Когда говорят о разрядности микропроцессора, то имеют в виду разрядность шины данных.

Разрядность шинных команд – одинакова для всех типов микропроцессора.

Первым микропроцессором для ПК (IBM PC) была схема «8086» фирмы INTEL. У него была 16-ти разрядная внутренняя шина данных и 16-ти разрядная внешняя.

Шина адреса имела 20 разрядов, что позволяло адресовать 220 = 1024 x 1024 = 1 Мб памяти (1978 год)

Следующим был выпущен микропроцессор «8088» с 8-ми разрядной внешней шиной данных для использования дешевых 8-ми разрядных устройств (1979 год). В микропроцессоре «80286» была увеличена разрядность шины адреса до 24.

В микропроцессоре «80386» впервые появилась 32-х разрядные шины адреса и данных. Микропроцессор содержал команды деления памяти на сегменты, что позволяло параллельно решать несколько задач. Для этого микропроцессора началась разработка операционной системы Windows (1985 год).

Следующим (1989 год) был микропроцессор «80486» он содержал кэш-память и сопроцессор. В остальном он не отличался от «80386»

В 1993 году появился микропроцессор «80586». Шина данных была увеличена до 64 разряда, шина адреса – 32 разряда. Для этого микропроцессора фирма INTEL наконец-то зарегистрировала торговую марку Pentium™.

Микропроцессор Pentium имел 2 одинаковых секции и мог в одном такте выполнять по 2 команды.

В процессоре имелся буфер метод перехода, который предсказывал ветвления в программах. Тем самым выполнение программы могло вестись параллельно.

Для изготовления применялась «0,35-МКм технология», то есть расстояние между транзисторами в процессоре равнялось 0,35 МКм.

Микропроцессор Pentium Pro (1995 год) имел 3 одинаковых секции и мог выполнять по 3 команды за такт. Шина адреса – 36, шина данных – 64.

Pentium Pro начал шестое поколение микропроцессоров INTEL.

Микропроцессор NN exe (1996 год) содержал команды работы с кино и звуком. Ранее эти команды выполнялись с помощью программ.

Микропроцессор Pentium II является объединением Pentium Pro и Pentium NN exe. P II оказался дорогим, и поэтому были выпущены более дешевые микропроцессоры Celeron. У них была резко уменьшена кэш-память.

Микропроцессор Pentium III имел команды обработки нескольких потоков данных. Он быстрее работает над числами с плавающей точкой, в частности он может одновременно обрабатывать 4 пары действительных чисел.

В 2000 году появились микропроцессоры Pentium IV, или началось седьмое поколение микропроцессоров. Они точнее предсказывали переходы в программах. Технические новшества позволяли увеличить тактовую частоту.

Одним из способов увеличения производительности микропроцессора является использование Risk технологий (вычисление по множеству укороченных (программ) команд).

Эта технология заключается в использовании только простых и коротких, одно-тактовых команд. Сложные команды комбинируются из простых.

Набор простых команд лучше обрабатываются параллельно. Реализация Risk-технологий для ПК привела к микропроцессору Titanium. Выпуском микропроцессоров в мире занимается несколько фирм, из которых подавляющую долю рынка занимают 2 фирмы: Intel и AMD.

5.9. Принципы выбора ПК

Выбирать ПК необходимо по следующим персональным характеристикам.

  1. Производительность. Она измеряется в следующих единицах:

· MIPS – миллион операций в секунду с целыми числами.

· MFLOPS – миллион операций за секунду с плавающей точкой.

Производительность в основном определяется:

· тактовой частотой

· параллельным выполнением команды

· пропускной способностью системной шины

  1. Разрядность микропроцессора.
  2. Минимальная емкость оперативной памяти.

За счёт использования оперативной памяти многие программы обращаются к внешним устройствам. Увеличение оперативной памяти ускоряет работу компьютера.

  1. Емкость жесткого диска

Тенденция развития программного обеспечения показывает увеличение объемов самих программ и объемов необходимых данных.

  1. Объем кэш-памяти

За счет использования кэш-памяти процессор реже обращается к оперативной памяти.

  1. Тип дисплея и видеоадаптера.

Для профессиональной работы с графикой, просмотра кинофильмов требуется дорогой дисплей и видеоадаптер с большой памятью.

6. Информационно-логические основы построения ЭВМ

6.1. Системы счисления/ Формы представления чисел

Система счисления – это способ наименования и изображения чисел с помощью символов, имеющих количественное значение цифр.

Системы счисления бывают позиционными и непозиционными.

В позиционной системе счисления количество представлено отдельной цифрой, зависит от позиции цифры записи числа.

В непозиционной количество представлено отдельной цифрой, не зависит от позиции цифры записи числа.

Пример позиционной системы счисления – арабская, непозиционной – римская.

Основанием позиционной системы называется количество цифр в ней.

В Р-ричной сс Р-цифр.

Значение цифры изменяется от 0 до Р-1. В позиционной системе число может быть записано в форме с фиксированной точкой.

am am-1,…,a1 00 x a-1 a-2,…,a-c (6.1)

Запись 6.1 в Р-ричной системе означает величину следующего ряда.

amP + am-1Pm-1 + … + a1P1 + a0P0 + a-1P-1 + a-2P-2 + a-cP-c (6.2)

Например в десятичной системе можно записать 123.4 = 1*102 + 2*101 + 3*100 + 4*10-1

Положение цифр в числе называется разрядом. Максимально целое число, которое можно записать в m-разряде равно:

Nmax = Pm – 1 (6.3)

В N разрядах можно записать Pm штук.

Например: В 3 разрядах десятичной системе можно записать 1000 разных чисел.

В 8 разрядах двоичной системы можно записать 28 = 256 разных чисел.

В ЭВМ используется двоичная система счисления, это связано с тем, что самым надежным устройством хранения информации является устройство, которое имеет только 2 устойчивых состояния (включено/выключено, +/-, 1/0, да/нет).

Одно из состояний принимают за 0, другое за единицу.


среда, 3 ноября 2004 г.

Арабские цифры

0 ۰

1 ۱

2 ۲

3 ۳

4 ۴

5 ۵

6 ۶

7 ۷

8 ۸

9 ۹

6.2. Представление информации в ЭВМ

Байт – это 8 бит.

Для измерения объёмов информации в ЭВМ используются следующие единицы (табл. 5.2.)

Единицы измерения

Байт

Слово, параграф

Двойное слово

Расширенное слово

Кб

Мб

Гига-байт

Тера-байт

Пета-байт

Количество байт

1

2

4

8

1024

10242

10243

10244

10245

Двоичные целые числа размещаются в слове и в двоичном слове по схеме рис.6.1.

Знак числа

Величина числа

№ разряда

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Пример 1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

Пример 2

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

Числа с плавающей точкой хранятся в расширенном слове по схеме рис.6.2. Знак числа, знак порядка и мантисса хранятся в разных частях слова.