Так как мы имеем дело с неизвестной генеральной совокупностью и выносим суждения о ней на основе выборочной информации, то мы можем и не прийти к правильному выводу. Мы сделаем неправильный вывод, если отвергнем нулевую гипотезу, когда она справедлива (ошибка I рода), или примем нулевую гипотезу, когда она ошибочна (ошибка II рода).
В большинстве случаев при проведении проверки гипотез в экономике задается некоторый допустимый уровень вероятности совершения ошибки I рода (
) и осуществляется проверка на основе выборочной информации. В классическом статистическом выводе существует два общих правила для определения величины :чем больше степень уверенности в нулевой гипотезе, тем меньше должно быть значение
.чем больше цена отбрасывания справедливой нулевой гипотезы, тем меньше значение должно иметь
.Сформулируем общий алгоритм проверки статистических гипотез. Процедуру проверки можно описать следующими шагами:
1) формулировка гипотезы. Гипотеза формулируется в терминах различия величин. Например, есть случайная величина х и константа a. Они не равны (арифметически), но нужно установить, значимо ли статистически между ними различие. Существует два типа критериев:
а) двухсторонний критерий вида: х
a;б) односторонний критерий вида: х< a или х< a.
Необходимо отметить, что знаки >, <, = здесь используются не в арифметическом, а в «статистическом» смысле. Их необходимо читать «значимо больше», «значимо меньше», «различие незначимо».
2) Установка закона распределения. Далее необходимо установить или постулировать закон распределения. Существуют также критерии, которые не зависят от вида распределения - так называемые непараметрические критерии.
3) Вычисление тестовой статистики. Тестовая статистика - некоторая функция от рассматриваемых величин, закон распределения которой точно известен и ее можно сравнить с табличным значением.
4) Сравнение с табличным значением. Затем тестовая статистика сравнивается с табличным значением. Тестовая статистика всегда зависит от доверительной вероятности, и, в некоторых случаях, от дополнительных параметров. Так, в приведенном выше примере сравнения двух дисперсий тестовая статистика сравнивается с табличным значением критерия Фишера («критическим» значением), которое зависит от доверительной вероятности и числа степеней свободы дисперсий.
5) Вывод. На основании сравнения делается вывод о том, выполняется ли гипотеза (например, значимо ли различие и т.д.).
Уровень значимости
- это такое малое значение вероятности попадания критерия в критическую область при условии справедливости гипотезы, что появление этого события может расцениваться как следствие существующего расхождения выдвинутой гипотезы и результатов выборки.Допустим, рассчитанное по эмпирическим данным значение критерия попало в критическую область. Тогда при условии верности проверяемой гипотезы H0 вероятность этого события будет не больше уровня значимости
. Поскольку выбирается достаточно малым, то такое событие является маловероятным, и, следовательно, проверяемая гипотеза может быть отвергнута. Если же наблюдаемое значение характеристики не принадлежит к критической области, и, следовательно, находится в области допустимых значений, то проверяемая гипотеза H0 не отвергается. Вероятность попадания критерия в область допустимых значений при справедливости проверяемой гипотезы H0 равна . Чем меньше уровень значимости, тем меньше вероятность забраковать проверяемую гипотезу, когда она верна, то есть меньше вероятность совершить ошибку первого рода. Но при этом расширяется область допустимых значений и, значит, увеличивается вероятность совершения ошибки II рода.Если альтернативная гипотеза
, то гипотеза называется двухсторонней. Если гипотеза имеет вид и , то такую гипотезу называют односторонней. При проверке двухсторонней гипотезы с уровнем значимости критическое значение будет определено с уровнем значимости /2 и с соответствующим числом степеней свободы. При проверке односторонней гипотезы критическое значение будет определено с соответствующим числом степеней свободы и уровнем значимости .Для принятия решения о принятии или отвержении гипотезы необходимо рассчитать расчетное значение критерия, выбрать критическую область, и сравнить расчетное значении критерия с табличным. Критическая область будет зависеть от выбранной альтернативной гипотезы, как показано на рисунках 1-3.
Рисунок 1 – Двухсторонняя критическая область.
Гипотезы:
Табличное значение критерия определяется для уровня значимости
/2 и соответствующего числа степеней свободы. Если TR расчетное попадает в интервал ( ; ), то принимается нулевая гипотеза, в противном случае, нулевая гипотеза отвергается и принимается альтернативная:Рисунок 2 – Критическая область при альтернативной гипотезе «больше чем».
Гипотезы:
Табличное значение критерия определяется для уровня значимости
и соответствующего числа степеней свободы. Если T расчетное попадает в интервал ( ; ), то принимается нулевая гипотеза, в противном случае, нулевая гипотеза отвергается и принимается альтернативная.Рисунок 3 – Критическая область при альтернативной гипотезе «меньше чем».
Гипотезы:
Табличное значение критерия определяется для уровня значимости
и соответствующего числа степеней свободы. Если T расчетное попадает в интервал ( ), то принимается нулевая гипотеза, в противном случае, нулевая гипотеза отвергается и принимается альтернативная.2.2 t-критерий Стьюдента
t-критерий Стьюдента - общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на сравнении с распределением Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.
Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (а руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в журнале «Биометрика» под псевдонимом «Student» (Студент).
Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий.
t критерий Стьюдента для одной выборки:
,где
,где
- среднее значение выборки, - среднее значение нулевой гипотезы, - среднеквадратическое отклонение, n – количество данных в выборке.t критерий Стьюдента для двух выборок: