Смекни!
smekni.com

ЛИСП-реализация методов проверки статистических гипотез (стр. 3 из 3)

.

Число степеней свободы:

,

где

- среднее значение выборки,
- среднеквадратическое отклонение, n – количество данных в выборке.

3 Функциональные модели решения задачи

Функциональные модели решения задачи представлены на рисунках 4 – 8.

Условные обозначения:

mean – среднее значение выборки;

n – количество данных в выборке;

x-mean – среднее значение выборки;

y-mean – среднее значение выборки;

x – выборка;

y – выборка;

tr – t-критерий Стьюдента;

sr – среднеквадратичное отклонение;

lst – выборка.

Рисунок 4 – Функциональная модель решения задачи для функции list-mean

Рисунок 5 – Функциональная модель решения задачи для функции sum_x-x_mean

Рисунок 6 – Функциональная модель решения задачи для функции quadratic_mean

Рисунок 7 – Функциональная модель решения задачи для функции student_test1

Рисунок 8 – Функциональная модель решения задачи для функции student_test2


4 Программная реализация решения задачи

;проверка гипотезы при наличии одной выборки

;(x-_x_)^2

(defun sum_x-x_mean (lst mean)

(cond

((null lst) 0)

((atom lst) (* (- lst mean) (- lst mean)))

(t (+ (sum_x-x_mean (car lst) mean) (sum_x-x_mean (cdr lst) mean)))

)

)

;среднеквадратическое отклонение

(defun quadratic_mean (lst mean n)

(sqrt (/ (sum_x-x_mean lst mean) (- n 1)))

)

;среднее арифметическое

(defun list-mean (lst)

(float (/ (apply '+ lst) (length lst)))

)

;h0 - нулевая гипотеза

(defun student-test1 (x h0)

(setq x_mean (list-mean x))

(setq sr (quadratic_mean x x_mean (length x)))

(setq tr (/ (- x_mean h0) (/ sr (sqrt (length x)))))

tr

)

;проверка гипотез по двум выборкам

(defun student-test2 (x y)

(setq x_mean (list-mean x))

(setq y_mean (list-mean y))

(setq sr1 (quadratic_mean x x_mean (length x)))

(setq sr2 (quadratic_mean y y_mean (length y)))

(setq tr (/ (- x_mean y_mean) (sqrt (+ (/ (* sr1 sr1) (length x)) (/ (* sr2 sr2) (length y))))))

tr

)

;число степеней свободы для двух выборок

(defun df2 (x y)

(setq x_mean (list-mean x))

(setq y_mean (list-mean y))

(setq sr1 (quadratic_mean x x_mean (length x)))

(setq sr2 (quadratic_mean y y_mean (length y)))

(setq d (/ (expt (+ (/ (* sr1 sr1) (length x)) (/ (* sr2 sr2) (length y))) 2)

(+ (/ (expt (/ (* sr1 sr1) (length x)) 2) (- (length x) 1))

(/ (expt (/ (* sr2 sr2) (length y)) 2) (- (length y) 1))

)

))

d

)

;число степеней свободы для одной выборки

(defun df1 (x)

(length x)

)

(defun test-hypothesis ()

(setq input-stream (open " d:\data.txt" :direction :input))

;количество выборок

(setq cnt (read input-stream))

(when (= cnt 1) (setq x (read input-stream)))

(when (= cnt 2)

(setq x (read input-stream))

(setq y (read input-stream))

)

;тип гипотезы

(setq type (read input-stream))

;нулевая гипотеза

(setq h0 (read input-stream))

;альтернативная гипотеза

(setq h1 (read input-stream))

;табличное значение

(setq t-tabl (read input-stream))

(close input-stream)

(when (= cnt 1)

(setq tr (student-test1 x (car h0)))

(setq h0 (cadr h0))

)

(when (= cnt 2) (setq tr (student-test2 x y)))

;t_tabl < tr < t_tabl => h0 иначе h1

; tr < t_tabl => h0 иначе h1

; tr >-t_tabl => h0 иначе h1

(setq hpts

(cond

((eql type '/=) (if (and (> tr (* -1 t-tabl)) (< tr t-tabl)) h0 h1))

((eql type '>)(if (< tr t-tabl) h0 h1))

((eql type '<)(if (> tr (* -1 t-tabl)) h0 h1))

)

)

(setq output-stream (open " d:&bsol;hypothesis.txt" :direction :output))

(format output-stream "~~Kriterii Stiudenta ~A~%" tr)

(format output-stream "~~Tablichnoe Znachenie ~A~%" t-tabl)

(format output-stream "~~Prinyataya gipoteza : ~A~%" hpts)

(close output-stream)

)

(test-hypothesis )


5 Пример выполнения программы

Пример 1.

Рисунок 9 – Входные данные

Рисунок 10 – Выходные данные

Пример 2.

Рисунок 11 – Входные данные

Рисунок 12 – Выходные данные


Пример 3.

Рисунок 13 – Входные данные

Рисунок 14 – Выходные данные

Пример 4.

Рисунок 15 – Входные данные

Рисунок 16 – Выходные данные


Заключение

Теория статистической проверки гипотез позволяет с единой точки зрения трактовать выдвигаемые практикой различные задачи математической статистики (оценка различия между средними значениями, проверка гипотезы постоянства дисперсии, проверка гипотезы независимости, проверка гипотез о распределениях и т.п.). Идеи последовательного анализа, примененные к статистической проверке гипотез, указывают на возможность связать решение о принятии или отклонении гипотезы с результатами последовательно проводимых наблюдений. В этом случае число наблюдений, на основе которых по определённому правилу принимается решение, не фиксируется заранее, а определяется в ходе эксперимента.

Итогом работы можно считать созданную функциональную модель реализации методов проверки статистических гипотез. Для проверки или отклонения гипотезы используется t-критерий Стьюдента. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.


Список использованных источников и литературы

1. Болч Б. Многомерные статистические методы для экономики. [Текст] / Б. Болч, К. Дж. Хуань. – М.: Статистика, 1979. С. 317.

2. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, 2007. – 708 с.

3. Венецкий, И.Г. Основные математико-статистические понятия и формулы в экономическом анализе: Справочник. [Текст] / И.Г. Венецкий, В.И. Венецкая. – М.: Статистика, 1979. С. 447.

4. Ефимова, М.Р. Общая теория статистики. [Электронный ресурс] / М.Р. Ефимова, Е.В. Петрова, В.Н. Румянцева. – М.: ИФРА-М, 1996. С. 416.

5. Проверка статистических гипотез [Электронный ресурс] – Режим доступа: http://ru/wikipedia.org/wiki/ Проверка_статистических_гипотез.

6. Семакин, И.Г. Основы программирования. [Текст] / И.Г.Семакин, А.П.Шестаков. – М.: Мир, 2006. C. 346.

7. Симанков, В.С. Основы функционального программирования [Текст] / В.С. Симанков, Т.Т. Зангиев, И.В. Зайцев. – Краснодар: КубГТУ, 2002. – 160 с.

8. Степанов, П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А.Степанов, А.В. Бржезовский. – М.: ГУАП, 2003. С. 79.

9. Хювенен Э. Мир Лиспа [Текст] / Э. Хювенен, Й. Сеппянен. – М.: Мир, 1990. – 460 с.