Смекни!
smekni.com

Курс лекций Операционным системам и среды (стр. 15 из 21)

Поскольку потоки обладают некоторыми свойствами процессов, их иногда называют облегченными процессами. Термин многопоточный режим также используется для описания ситуации, при которой допускается работа нескольких потоков в одном и том же процессе.

На рис. 20, а показаны три традиционных процесса. У каждого из них имеется свое собственное адресное пространство и единственный поток управления. В отличие от этого, на рис. 20, б показан один процесс, имеющий три потока управления. Хотя в обоих случаях у нас имеется три потока, на рис. 20, а каждый из них работает в собственном адресном пространстве, а на рис. 20, б все три потока используют общее адресное пространство.

Рис. 20. Три процесса, у каждого из которых по одному потоку (а). Один процесс с тремя потоками (б)

В многозадачном режиме за счет переключения между несколькими процессами система создавала иллюзию параллельно работающих отдельных последовательных процессов. Многопоточный режим осуществляется аналогичным способом. Центральный процессор быстро переключается между потоками, создавая иллюзию, что потоки выполняются параллельно, пусть даже на более медленном центральном процессоре, чем реально используемый. При наличии в одном процессе трех потоков, ограниченных по скорости вычисления, будет казаться, что потоки выполняются параллельно, и каждый из них выполняется на центральном процессоре, имеющем скорость, которая составляет одну треть от скорости реального процессора.

Многопоточная обработка повышает эффективность работы системы по сравнению с многозадачной обработкой. Например, в многозадачной среде Windows можно одновременно работать с электронной таблицей и текстовым редактором. Однако, если пользователь запрашивает пересчет своего рабочего листа, электронная таблица блокируется до тех пор, пока эта операция не завершится, что может потребовать значительного времени. В многонитевой среде в случае, если электронная таблица была разработана с учетом возможностей многонитевой обработки, предоставляемых программисту, этой проблемы не возникает, и пользователь всегда имеет доступ к электронной таблице.

Различные потоки в процессе не обладают той независимостью, которая есть у различных процессов. У всех потоков абсолютно одно и то же адресное пространство, а значит, они так же совместно используют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому адресу памяти в пределах адресного пространства процесса, один поток может считывать данные из стека другого потока, записывать туда свои данные и даже стирать оттуда данные. Защита между потоками отсутствует, потому что 1) ее невозможно осуществить и 2) в ней нет необходимости. В отличие от различных процессов, которые могут принадлежать различным пользователям и которые могут враждовать друг с другом, один процесс всегда принадлежит одному и тому же пользователю, который, по-видимому, и создал несколько потоков для их совместной работы, а не для вражды. Чтобы организовать взаимодействие и обмен данными, потокам вовсе не требуется обращаться к ОС, им достаточно использовать общую память – один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов, по-прежнему, хорошо защищены друг от друга.

В дополнение к использованию общего адресного пространства все потоки могут совместно использовать одни и те же открытые файлы, дочерние процессы, ожидаемые и обычные сигналы и т. п. Поэтому структура, показанная на рис. 20, а может использоваться, когда все три процесса фактически не зависят друг от друга, а структура, показанная на рис. 20, б, может применяться, когда три потока фактически являются частью одного и того же задания и активно и тесно сотрудничают друг с другом.

Подобно традиционному процессу (то есть процессу только с одним потоком), поток должен быть в одном из состояний, присущих процессу.

Итак, потоки имеют собственные: · программный счетчик, · стек, · регистры, · состояние. Потоки разделяют: · адресное пространство, · глобальные переменные, · открытые файлы, · таймеры, · статистическую информацию.

Контекст и дескриптор процесса

При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса и контекст процесса.

Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск. В дескрипторе содержится информация о состоянии процесса, о расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также о его итоговом значении – глобальном приоритете, об идентификаторе пользователя, создавшего процесс, о родственных процессах, о событиях, осуществления которых ожидает данный процесс, и другая информация.

Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов.

Очереди процессов представляют собой дескрипторы отдельных процессов, объединенные в списки. Таким образом, каждый дескриптор, кроме всего прочего, содержит по крайней мере один указатель на другой дескриптор, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать процессы, переводить процессы из одного состояния в другое.

Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: содержимое регистров процессора, коды ошибок выполняемых процессором системных вызовов, информация обо всех открытых данным процессом файлах и незавершенных операциях ввода-вывода и другие данные, характеризующие состояние вычислительной среды в момент прерывания. Контекст, так же как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск.

Диспетчеризация заключается в реализации найденного в результате планирования решения, то есть в переключении процессора с одного процесса на другой и непосредственном переводе процесса из состояния готовности в состояние исполнения.

Диспетчеризация: реализация результатов планирования. Включает в себя:

· переключение потоков;

· сохранение контекста текущего потока;

· загрузка контекста нового потока;

· запуск нового потока.

Поскольку операция переключения контекстов существенно влияет на производительность вычислительной системы, программные модули ОС выполняют диспетчеризацию потоков совместно с аппаратными средствами процессора.

Создание процессов и потоков

Создать процесс – это, прежде всего, означает создать дескриптор процесса.

Создание описателя процесса знаменует собой появление в системе еще одного претендента на вычислительные ресурсы. Начиная с этого момента при распределении ресурсов ОС должна принимать во внимание потребности нового процесса.

Создание процесса включает загрузку кодов и данных исполняемой программы данного процесса с диска в оперативную память. Для этого ОС должна обнаружить местоположение программы на диске, перераспределить оперативную память и выделить память исполняемой программе нового процесса. Затем необходимо считать программу в выделенные для нее участки памяти и, возможно, настроить программу в зависимости от размещения ее в памяти. В системах с виртуальной памятью в начальный момент может загружаться только часть кодов и данных процесса, с тем чтобы «подкачивать» остальные по мере необходимости. Существуют системы, в которых на этапе создания процесса не требуется непременно загружать коды и данные в оперативную память, вместо этого исполняемый модуль копируется из того каталога файловой системы, в котором он изначально находился, в область подкачки – специальную область диска, отведенную для хранения кодов и данных процессов. При выполнении всех этих действий подсистема управления процессами тесно взаимодействует с подсистемой управления памятью и файловой системой.

В многопоточной системе при создании процесса ОС создает для каждого процесса как минимум один поток выполнения. При создании потока так же, как и при создании процесса, операционная система генерирует специальную информационную структуру – описатель потока, который содержит идентификатор потока, данные о правах доступа и приоритете, о состоянии потока и другую информацию. В исходном состоянии поток (или процесс, если речь идет о системе, в которой понятие «поток» не определяется) находится в приостановленном состоянии. Момент выборки потока на выполнение осуществляется в соответствии с принятым в данной системе правилом предоставления процессорного времени и с учетом всех существующих в данный момент потоков и процессов. В случае если коды и данные процесса находятся в области подкачки, необходимым условием активизации потока процесса является также наличие места в оперативной памяти для загрузки его исполняемого модуля.