Смекни!
smekni.com

Курс лекций Операционным системам и среды (стр. 1 из 21)

Тема 1. Вычислительная система. Состав вычислительной системы

Одной из основных задач технических дисциплин является подбор средств и методов механизации и автоматизации работ. Автоматизация работ с данными имеет свои особенности и для ее реализации используются особые устройства.

Совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных, называется вычислительной техникой.

Конкретный набор взаимодействующих между собой устройств и программ, который предназначен для обслуживания одного рабочего участка, называется вычислительной системой. Центральным устройством большинства вычислительных систем является компьютер. Он предназначен для автоматизации создания, хранения, обработки и передачи данных.

Состав вычислительной системы называется конфигурацией.

Отдельно рассматривают аппаратную конфигурациювычислительных систем и их программную конфигурацию. Критериями выбора аппаратного или программного решения являются производительность и эффективность.

Рис. 1. Состав вычислительной системы

Аппаратное обеспечение

К аппаратному обеспечению вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию — аппаратную конфигурацию, необходимую для исполнения конкретных видов работ, можно собирать из готовых узлов и блоков.

По способу расположения устройств относительно центрального процессора различают внутренниеи внешниеустройства. Внешними, как правило, являются большинство устройств ввода-вывода данных (их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных.

Согласование между отдельными узлами и блоками выполняют с помощью переходных аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы называют протоколами. Таким образом, протокол — это совокупность технических условий, которые должны быть обеспечены разработчиками устройств для успешного согласования их работы с другими устройствами.

Многочисленные интерфейсы, присутствующие в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательныеи параллельные.

1.Через последовательный интерфейс данные передаются последовательно, бит за битом, их производительность измеряют битами в секунду (бит/с, Кбит/с, Мбит/с).

2. Через параллельный интерфейс данные передаются одновременно группами битов. Количество битов, участвующих в одной посылке, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один цикл. Параллельные интерфейсы обычно имеют более сложное устройство, чем после­довательные, но обеспечивают более высокую производительность. Их применяют там, где важна скорость передачи данных: для подключения печатающих устройств, устройств ввода графической информации, устройств записи данных на внешний носитель и т. п. Производительность параллельных интерфейсов измеряют бай­тами в секунду (байт/с; Кбайт/с; Мбайт/с).

Первоначально последовательные интерфейсы применяли для подключения «медленных» устройств (простейших устройств печати низкого качества, устройств ввода и вывода знаковой и сигнальной информации, контрольных датчиков, малопроизводительных устройств связи и т. п.), а также в тех случаях, когда отсутствуют существенные ограничения по продолжительности обмена данными.

Однако с развитием техники появились новые, высокоскоростные последовательные интерфейсы, не уступающие параллельным, а нередко и превосходящие их по пропускной способности. Сегодня последовательные интерфейсы применяют для подключения к компьютеру любых типов устройств.

Программное обеспечение

Программы — это упорядоченные последовательности команд. Конечная цель любой компьютерной программы — управление аппаратными средствами.

Состав программного обеспечения вычислительной системы называют программ­ной конфигурацией. Между программами, как и между физическими узлами и блоками существует взаимосвязь — многие программы работают, опираясь на другие программы более низкого уровня, то есть мы можем говорить о межпрограммном интерфейсе. Возможность существования такого интерфейса тоже основана на существовании технических условий и протоколов взаимодействия, а на практике он обеспечивается распределением программного обеспечения на несколько взаимодействующих между собой уровней.

Уровни программного обеспечения представляют собой пирамидальную конструк­цию. Каждый следующий уровень опирается на программное обеспечение пред­шествующих уровней. Каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с про­граммным обеспечением базового уровня не способна выполнять большинство функций, но позволяет установить системное программ­ное обеспечение.

Рис. 2. Структура программного обеспечения

1. Базовый уровень. Самый низкий уровень программного обеспечения представляет базовое программное обеспечение. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в специальных микросхемах, называемых постоянными запоминающими устройствами (ПЗУ — ReadOnlyMemory, ROM). Программы и данные записываются («прошиваются») в микросхемы ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.

2. Системный уровень. Системный уровень — переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспе­чением, то есть выполняют «посреднические» функции.

средства обеспечения пользовательского интерфейса – благодаря им компьютер получает возможность вводить данные в вычис­лительную систему, управлять ее работой и получать результат в удобной для себя форме.

драйверы – расширяют возможности ОС, позволяя ей работать с тем или иным подключенным устройством, обучая ее новому протоколу обмена данными и т. д.

Совокупность программного обеспечения системного уровня образует ядро операционной системы компьютера. Полное понятие операционной системы мы рассмотрим несколько позже, а здесь только отметим, что если компьютер оснащен программным обеспечением системного уровня, то он уже подготовлен к установке программ более высоких уровней, к взаимодействию программных средств с оборудованием и, самое главное, к взаимодействию с пользователем. То есть наличие ядра операционной системы — непременное условие для возможности практической работы человека с вычислительной системой.

3. Служебный уровень. Программное обеспечение этого уровня взаимодействует как с программами базового уровня, так и с программами системного уровня. Основное назначение служебных программ (их также называют утилитами) состоит в автоматизации работ по проверке, наладке и настройке компьютерной системы. Во многих случаях они используются для расширения или улучшения функций системных программ. Некоторые служебные программы (как правило, это программы обслуживания) изначально включают в состав операционной системы, но большинство служебных программ являются для операционной системы внешними и служат для расширения ее функций.

В разработке и эксплуатации служебных программ существует два альтернативных направления:

а) интеграция с операционной системой - служебные программы могут изменять потребительские свойства системных программ, делая их более удобными для практической работы.

б) автономное функционирование – служебные программыслабо связаны с системным программным обеспечением, но предоставляют пользователю больше возможностей для персональной настройки их взаимодействия с аппаратным и программным обеспечением.

4. Прикладной уровень. Программное обеспечение прикладного уровня представ­ляет собой комплекс прикладных программ, с помощью которых на данном рабочем месте выполняются конкретные задания.

Примеры прикладных программных средств

1. Текстовые редакторы.

Функции:

- ввод и редактировании текстовых данных;

- автоматизация процессов ввода и редактирования.

Для операций ввода, вывода и сохранения данных текстовые редакторы вызывают и используют системное программное обеспечение (это характерно и для всех прочих видов прикладных программ)

2. Текстовые процессоры. Основное отличие текстовых процессоров от текстовых редакторов в том, что они позволяют не только вводить и редактировать текст, но и форматировать его, то есть оформлять. Соответственно, к основным средствам текстовых процессоров относятся средства обеспечения взаимодействия текста, графики, таблиц и других объектов, составляющих итоговый документ, а к допол­нительным — средства автоматизации процесса форматирования.

Современный стиль работы с документами подразумевает два альтернативных подхода — работу с бумажными документами и работу с электронными докумен­тами (по безбумажной технологии). Поэтому текстовые процессоры позволяют выполнять 2 виды форматирования — форматирование документов, предназначенных для печати, и форма­тирование электронных документов, предназначенных для отображения на экране. Приемы и методы в этих случаях существенно различаются. Соответственно, разли­чаются и текстовые процессоры, хотя многие из них успешно сочетают оба подхода.