Смекни!
smekni.com

Этапы становления информационных технологий (стр. 2 из 3)

На основе табуляторов в середине 1930-х годов создается прообраз первой локальной вычислительной сети. В Питс­бурге (США) в универмаге была установлена система, состо­ящая из 250 терминалов, соединенных телефонными лини­ями с 20 табуляторами и 15 пишущими машинками для рас­четов с покупателями.

В 1930-х годах немецкий инженер Конрад Цузе пришел к идее создания универсальной вычислительной машины с про­граммным управлением и хранением информации в запоми­нающем устройстве. Он сконструировал первую программноуправляемую вычислительную машину.

В 40 - 60 годах XX века с появлением электронных пи­шущих машинок, диктофонов и копировальных машин раз­вертывается этап электронной технологии в развитии техни­ки вычислений. Началом этого этапа считается время изоб­ретения Т. Эдисоном диода - первой электронной лампы. Затем Ли де Форест добавил в нем третий электрод и появи­лась трехэлектродная лампа - триод. На основе тридов уже можно было создавать основные компоненты ЭВМ - элект­ронные быстродействующие реле и триггеры.

Любая вычислительная машина состоит из большого чис­ла однотипных компонентов (триггеров) и других типовых приборов. Поэтому уже в самых первых, «релейных», ре­ализациях ЭВМ стал осуществляться модульный принцип изготовления. Это явилось основой для серийного промыш­ленного выпуска типовых модулей и сборки из них большо­го числа ЭВМ.

ЭВМ, построенные на электронных лампах, обладали су­щественным недостатком: низкой экономичностью (элект­ронные лампы потребляли много энергии и выделяли много тепла, занимали большой объем) и, самое главное, были не­надежными. Поэтому выход из строя всего одной из несколь­ких тысяч ламп мог полностью остановить работу ЭВМ.

Повысить надежность и уменьшить размеры вычисли­тельных устройств удалось только в начале 50-х годов XX ве­ка. Это произошло в результате изобретения в 1947 году аме­риканскими учеными У. Шоркли, Дж. Бардином и У. Брет-тейном принципиально нового электронного устройства - транзистора. Это изобретение было лишено большинства не­достатков электронных ламп и позволило сконструировать первую мини-ЭВМ. Новые типовые узлы и модули почти на порядок уменьшили размеры компьютеров.

Новый этап в развитии вычислительной техники насту­пил в 1958 году, когда была создана интегральная микро­схема. С ее созданием начинается эра микроэлектроники. В микросхеме объединены все необходимые компоненты: транзисторы, резисторы, конденсаторы и соединяющие их проводники - в одном кремниевом кристалле. Дальнейшее развитие было уже чисто технологическим: постоянная ми­ниатюризация компонентов модуля, повышение надежно­сти, увеличение числа узлов на единице площади или объ­ема и т.д.

Нельзя не отметить хотя и дальних, но родственников ЭВМ - электронных калькуляторов. Разновидности этих устройств (портативные, переносные и карманные) быстро вытеснили ручных и электромеханических собратьев из пла­новых отделов, бухгалтерий, научных лабораторий.

На смену первым вычислительным комплексам пришли ЭВМ с диалоговым режимом. Та или иная форма диалога человека с ЭВМ присутствовала всегда. Но для компьюте­ров прошлых поколений процесс отладки программы состо­ял из ввода программы и контрольных данных в память ЭВМ с перфокарт или перфолент (позже с магнитных лент), запуска (прогона) программы, получения результатов и ди­агностических сообщений на печатающем устройстве. Пос­ле производилось устранение выявленных ошибок вплоть до разработки готовой к использованию, надежно работа­ющей программы. Это был довольно длительный и трудо­емкий процесс.

В настоящее время этот процесс в принципе не изменился, но существенно улучшились условия для человека. С появ­лением у ЭВМ телевизионного монитора и клавиатуры для набора команд закончилась эпоха перфокарт, перфолент и распечаток, существенно тормозивших диалог человека и ЭВМ. Предвестником подлинной революции стали большие ЭВМ, обеспечивающие многопользовательский и диалого­вый режимы. Стало возможным появление таких типов про­граммных изделий, как обучающие программы, информаци­онно-поисковые системы, электронные словари. Примерно в то же время появились и первые программы для массово­го потребителя: редакторы текста (текстовые процессоры), электронные таблицы и системы управления базами данных. Эти программы пользуются и сегодня огромным спросом, потому что они ориентированы на огромную армию самых различных пользователей: от экономистов и бухгалтеров до архитекторов и врачей.

Как далекие предки электронно-вычислительных машин, так и первые ЭВМ создавались для нескольких целей: для расчетов в математике (таблицы логарифмов), моделирова­ния физических процессов и явлений, различных расчетов в реальной повседневной практической деятельности. Одна­ко в таких фундаментальных науках или областях знания, как экономика, политика, и в подчиненных - кадровая служба, экология - этот принцип реализовывался каждый раз по-своему.

Стимулом для стремительного развития теоретических ос­нов кибернетики и теории информации в середине XX века стала потребность в обработке и передаче больших массивов информации и управления сложными системами, в первую очередь, военно-стратегического назначения.

Теоретические основы развития вычислительной техни­ки заложили исследования американских ученых Норберта Винера и Клода Шеннона. Они стояли у истоков науч­но-технической революции в вычислительной технике. Се­годня итоги этого процесса в истории развития человече­ства проявляются во всех областях человеческой деятель­ности.

2.2 ИТ - история в лицах

В 1936 году Цузе построил первую модель механической вычисли­тельной машины, в которой использовалась двоичная система счисле­ния. Машина обрабатывала числа с плавающей запятой, использовала трехадресную систему команд и перфокарты. В качестве элементной базы Цузе применил электромеханические реле, которые к тому време­ни широко использовались в различных областях техники.

В 1940 году в Германском научно-исследовательском центре авиации была представлена первая в мире действующая вычислительная маши­на с программным управлением (модель Z3), построенная Конрадом Цузе. Это была релейная двоичная машина, имеющая память на 6422-раз­рядных числа с плавающей запятой: 7 разрядов — для порядка и 15 — для мантиссы. Ввод данных осуществлялся с помощью десятичной кла­виатуры. Был предусмотрен цифровой вывод и автоматическое преоб­разование десятичных чисел в двоичные и обратно. Во время бомбарди­ровок территории Германии в ходе Второй мировой войны все образцы машин Z3 были уничтожены. После войны Цузе изготовил модели Z4 и Z5, а в 1945 году создал первый машинно-ориентированный язык програм­мирования.

2.3 Отец кибернетики

Винер Норберт родился в семье профессора, выходца из небольшо­го городка Белосток в Белоруссии. Уже в 18 лет молодой Винер получил степень доктора философии в Гарвардском университете (США). После Первой мировой войны Винер преподавал в Массачусетсом технологи­ческом институте и выполнил ряд математических исследований миро­вого класса. Винер написал сотни статей по теории вероятностей и ста­тистике, рядам и интегралам Фурье, теории потенциала и теории чисел, обобщенному гармоническому анализу.

В 1939 — 1945 годах Винер занимался вычислительной техникой, в частности баллистическими расчетами. В 1945—1947 годах у Винера возникла идея о необходимости создания единой науки, изучающей про­цессы хранения и переработки информации, управления и контроля. Для этой науки он предложил название «кибернетика», получившее общее признание. Естественно, что конкретное содержание этой новой области знания не является созданием одного Винера. Не меньшую роль сыгра­ли в формировании кибернетики и идеи К. Шеннона. Но Винеру принад­лежит, несомненно, первое место в пропаганде значения кибернетики во всей системе человеческих знаний.

Заключение

Информация в настоящее время рассматривается как ре­сурс, который, как и традиционные ресурсы (труд, энергия, полезные ископаемые), можно добывать, перерабатывать, использовать и распространять. На проходившем в Моск­ве Третьем международном форуме по информатизации в 1994 году прозвучали слова о том, что раньше для произ­водства нужны были три вещи: земля, орудия, капитал, а теперь к этому перечню добавилась информация.

Одна из основных потребностей современного человека — это потребность в информации. Она нужна для работы, пу­тешествий, приобретения товаров, принятия решений, вы­полнения школьных заданий, заботы о здоровье, а также для осуществления других видов деятельности.

На вопрос: «Что такое информационные технологии?» - можно ответить очень просто: «Информационные техноло­гии - это технологии работы с информацией».

Удивительна эффективность человеческого мозга в отноше­нии накопления и поиска информации. Но и он не справляется с выросшими объемами сведений об окружающем мире. В XX веке информация стала накапливаться человечеством такими темпами, что без специальных технических средств отдельному человеку и даже целой организации становится все труднее справляться с поиском необходимых данных.

Человечество создало специальные системы для накопления и поиска информации. Они собирают, анализируют, организу­ют, хранят, отыскивают и распространяют информацию. Тра­диционным носителем информации на протяжении многих столетий являлась бумага. Огромное количество информации накапливалось в библиотеках и информационных центрах и отыскивалось вручную. С середины XX века для автоматиче­ского накопления и поиска информации начали использовать­ся различные механические и электронные помощники. Совре­менные электронные информационные системы могут обраба­тывать сотни миллионов элементов информации и отыскивать отдельные ее элементы практически мгновенно.