Смекни!
smekni.com

Компьютерное моделирование 2 (стр. 2 из 3)

Компьютерная модель сложной системы должна по возможности отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы по возможности описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.

Глава ii. Компьютерное моделирование в различных отраслях науки

2.1. Компьютерное моделирование в естествознании: возможности, достижения, перспективы

Большинство естественнонаучных теорий очень похожи на математику внутренней логикой своего построения. В основе любой математической теории лежит несколько аксиом, а все частные результаты, называемые теоремами, выводятся из аксиом посредством дедуктивных логических рассуждений. Аксиомы являются идеальными абстрактными образами реальных объектов.

Точно также во всех т.н. точных науках после этапа накопления экспериментальных данных формулируются основные законы, из которых могут быть получены все свойства различных систем и процессов, охватываемых данной теорией. Компактная и точная формулировка законов естествознания делается на языке математики в виде каких-либо уравнений. Таким образом, математической моделью любой реальной системы является некоторое уравнение или система уравнений с определенными значениями параметров и определенными граничными условиями.

Во многих случаях для решения этих уравнений традиционными аналитическими методами требуется использование серьезного, порой, очень громоздкого математического аппарата. Иногда решения в аналитической форме вообще отсутствуют. Попытка ограничиться рассмотрением простейших систем, для которых решение основных уравнений может быть найдено элементарными методами, существенно обедняет наши представления об окружающем мире.

Эффективный путь преодоления этих трудностей - построение компьютерной модели изучаемого явления, под которой понимается совокупность численных методов решения основных уравнений, алгоритмов их реализации и компьютерных программ. Хорошая компьютерная модель превращает компьютер из сверхбыстрого калькулятора в интеллектуальный инструмент, способствующий открытию новых эффектов, явлений и даже созданию новых теорий.

Результативность компьютерной модели в значительной степени определяется качеством используемого программного обеспечения. Основные требования, предъявляемые к программам - это, конечно, простота ввода и корректировки исходных данных, а также визуализация (наглядность) результатов счета. Сегодня имеются и мощные специализированные системы программирования (MAPLE, SolidWorks, AutoCAD и др.) и специальные программы, в которых реализуется удобные графические пользовательские возможности.

Приведу примеры задач, которые имеют красивые и неожиданные решения, найденные и исследованные с использованием компьютерного моделирования:

1. Как изменилась бы траектория спутника Земли, если бы солнечный ветер стал «дуть» сильнее?

2. Как происходит перераспределение энергии между частицами макроскопической системы при их тепловом движении?

В 1954 г. Э. Ферми, Дж. Паста и С. Улам путем компьютерного моделирования обнаружили удивительные особенности динамики атомов в кристаллах, что стимулировало активные исследования нелинейных систем и привело к ряду важнейших открытий в физике и математике.

2.2. Краткая оценка современного состояния САПР

За последние 7-8 лет промышленными предприятиями накоплен немалый опыт автоматизации локальных служб конструкторских и технологических подразделений. Несмотря на ограниченное применение средств САПР в реальной работе, результат очевиден: уровень владения новыми технологиями, знание различных прикладных систем, приобретенный реальный опыт работы плюс сотни (тысячи) разработанных чертежей, управляющих программ, моделей и т.п. Практически на каждом предприятии используются сети, ширится применение телекоммуникационных технологий (электронной почты, ИНТЕРНЕТ).

Системы автоматизированного проектирования (САПР) постепенно, но все же становятся обычным и привычным инструментом конструктора, технолога, расчетчика. Конкурировать иначе в условиях, когда сроки являются основным требованием заказчика, не представляется возможным. И хотя психологически руководителю отечественного промышленного предприятия трудно свыкнуться с мыслью, что дискеты с программами могут стоить дороже оборудования, это нисколько не удивительно, ибо интеллектуальный продукт является плодом многолетних научных, исследовательских и практических работ целого коллектива и колоссальных финансовых вложений. Надо осознать, что не только аппаратные, но и программные средства компьютеризации являются такими же важнейшими частями и ресурсами научно-производственного процесса, как персонал, сырье или электроэнергия.

Стремительно развивающаяся компьютерная индустрия и выход новейших операционных систем WINDOWS 98 и WINDOWS NT 4.0 явно обозначили новый виток гонки информационных технологий. При этом WINDOWS не ограничивается красивым оформлением, это качественно новый уровень работы пользователя, архитектуры комплекса, тесная интеграция разнородных систем, встроенные сетевые возможности и многое другое.

3.1. Параметрическое моделирование трехмерных твердотельных объектов в AutoCAD Designer R2.1 (модуль PARTS)

Как правило, даже сложные машиностроительные детали формируются из сравнительно простых элементов. Более того, многие формообразующие элементы являются стандартными конструкторско-технологическими элементами, например: фаска, сопряжение, отверстие. Другие же элементы, отличаясь простотой образующих поверхностей, тем не менее, обладают достаточно произвольной формой, но и в этом случае они всегда имеют один или более типичных профилей в одной из проекций или в сечении.

Процесс моделирования в AutoCAD Designer как раз и сводится к тому, чтобы сначала задать на плоскости типовой профиль, а затем придать ему пространственные свойства, построив так называемую базовую форму, а затем добавлять к ней новые конструкторско-технологические элементы (стандартные или описываемые типовыми профилями). Создание типовых профилей формообразующих элементов в AutoCAD Designer происходит в два этапа (при этом выполняемые действия максимально приближены к операциям, осуществляемым конструкторами в повседневной практике): сначала строится на так называемой эскизной плоскости концептуальный эскиз профиля, а затем на его элементы накладываются геометрические связи и вводятся параметрические размеры. По умолчанию при создании базовой формы в качестве эскизной плоскости используется плоскость XY пользовательской системы координат, однако задание профилей других конструкторских элементов может производиться и в плоскостях, отличных от исходной. В этом случае следует определить новую эскизную плоскость при помощи команды AMSKPLN (опция Sketch Plane в меню Parts, подменю Sketch или опция Плоскость построений в меню Детали, подменю Эскиз). Для ориентации эскизной плоскости в пространстве можно использовать как непосредственно грани существующей модели, так и специальные неформообразующие конструкционные элементы - рабочие плоскости. Помимо рабочих плоскостей в AutoCAD Designer для привязки формообразующих элементов при моделировании также эффективны другие неформообразующие конструкционные элементы: рабочая ось и рабочая точка.

3.2. Моделирование трехмерных твердотельных объектов в SolidWorks

Одним из самых заметных программных продуктов, относящихся к новому поколению, является SolidWorks, разработанный американской компанией SolidWorks Corporation, которая преследовала цель создания массовой системы для каждого конструктора под лозунгом “последние разработки в области CAD/CAM на каждый рабочий стол”. При этом потенциал продукта по возможностям конструирования позволяет создавать достаточно сложные трехмерные детали и сборки в машиностроении.

Твердотельное параметрическое моделирование детали базируется на создании дерева построений, отражающего этапы ее формообразования. Простые формы (объекты), добавляемые к текущей модели или вычитаемые из нее, формируются на базе плоского эскиза (плоского замкнутого контура без самопересечений), выполненного в произвольно ориентированной плоскости. К ним относятся тела вращения и выдавливания, тела, полученные сопряжением произвольно ориентированных сечений или сдвигом. Мощный аппарат наложения размерных и геометрических связей (ограничений) на геометрические элементы обеспечивают построение модели с возможностью изменения произвольного параметра, связывания его с значением другого параметра и т.п. Сохраняется неразрывная связь «эскиз - твердое тело», дающая возможность при необходимости корректировать модель через изменение её эскиза.

Возможности моделирования включают также в себя построения трёхмерных фасок и скруглений, ребер жесткости и литейных уклонов, создание различными способами полых (тонкостенных) тел, использование мощного аппарата построения вспомогательных плоскостей и осей. В версии SolidWorks-97 появились возможности оперировать трехмерными объектами и достаточно сложными поверхностями, которые могут служить частью других объектов, что позволяет всесторонне проследить формирование и свойства проектируемого изделия. Создание и ведение компьютерного файла проектируемого объекта позволяет отслеживать процесс создания трехмерной модели и вносить в него необходимые изменения. Можно изменить любой параметр модели и через несколько секунд увидеть результаты полной перестройки модели.