Пренебрегая членами ряда порядка выше первого (из-за их малости), с учётом частного случая (в установившемся состоянии после переходного режима при
Здесь
Аналогично могут быть получены линеаризованные уравнения регулятора и устройства сравнения:
Исключая из системы уравнений
где:
где a0 – an, b0 – bn, c0 – cn однозначно определяются коэффициентами α, β и γ системы.
Тот же вид, но в развёрнутой форме:
4.1.2 Математические модели систем управления в комплексной области
4.1.2.1 Преобразование Фурье
Абсолютно интегрируемые непрерывные функции f(t), т.е. функции, удовлетворяющие условию
Это преобразование Фурье или комплексный спектр функции оригинала f(t).
Существуют функции, для которых не выполняется неравенство (1), например: [1(t)], e-αt, eαt, sinαt при α>0, tn при n=1, 2, 3, … и др. Для них используют преобразование Лапласа, являющееся обобщением преобразования Фурье.
4.1.2.2 Преобразование Лапласа непрерывных функций
Рассмотрим f1(t)=f(t)e-ct, c=const такая, что:
При этом для существования этого интеграла от функции f(t) пришлось потребовать выполнения условия f(t)=0 t<0.
c>c0 (c0 — абсцисса абсолютной сходимости).
Для [1(t)] с0=0
Для e-αtс0=α
Для eαtс0=-α
Дляsinαt с0=0
Тогда получим
Это интеграл Лапласа или формула обращения в преобразовании Лапласа.
f(t) F(s)
4.1.2.3 Нули и полюсы изображения F(s)
F(s) — дробно рациональная функция.
Корни полиномов R(s) и Q(s) определяют свойства изображения или свойства этой функции.
4.1.2.3.1 Нули изображения F(s)
Представим F(s) в следующем виде:
4.1.2.3.2 Полюса изображения F(s)
Полюса изображения F(s) — это корни полинома знаменателя Q(s).
а
На комплексной плоскости s нули обозначают “0”, а полюса “Х”.
4.1.2.4 Дискретное преобразование Лапласа
Данное преобразование применяется для решетчатых функций.
4.1.2.5 Z-преобразование
Введём новую комплексную переменную z=est, тогда (7) можно представить в следующем виде:
s=c+j∞
Выбрав c>c0 ряд (8) будет сходиться, и решетчатой функции будет соответствовать Z-преобразование. f[i] F(z).
Z-преобразование применяют и к непрерывным функциям. При этом, если для РФ f[i] прямая и обратная задачи однозначны, то для непрерывной функции задача определения оригинала f[i] по его изображению не однозначна.
4.1.2.6 Основные свойства преобразования Лапласа и Z-преобразования
Свойства преобразования Лапласа | Свойства Z-преобразования |
1. Свойство линейности: | 1. Свойство линейности: |
2. Теорема о конечном значении: Если функция s∙F(s) является аналитической в правой полуплоскости и на мнимой оси, то | 2. Теорема о конечном значении: |
3. Теорема о начальном значении: Если | 3. Теорема о начальном значении: |
4. Теорема сдвига в области вещественной переменной: t-τ — запаздывание (по оси вправо). t+τ — упреждение (по оси влево). | 4. Теорема сдвига в области вещественной переменной: |
5. Свойство дифференцирования: Если начальные условия нулевые, то | |
6. Свойство интегрирования: при нулевых начальных условиях | |
7. Теорема свёртки: |
Лекция №7. 04.03.2003