Содержание
Введение
1. Резистор (Resistor)
2. Конденсатор (Capacitor)
3. Индуктивность (Inductor)
4. Взаимная индуктивность и магнитный сердечник (К)
5. Трансформатор (Transformer)
6. Линияпередачи (Transmission line)
7. Диод (Diode) и стабилитрон (Zener)
Заключение
Список литературы
Введение
Все компоненты (аналоговые и цифровые), из которых составляется электрическая принципиальная схема, имеют математические модели двух типов:
1. Встроенные математические модели стандартных компонентов, таких как резисторы, конденсаторы, диоды, транзисторы, независимые и зависимые источники сигналов, вентили и др., которые не могут быть изменены пользователями; можно только изменять значения их параметров;
2. Макромодели произвольных компонентов, составляемые пользователями по своему усмотрению из стандартных компонентов.
В свою очередь встроенные модели подразделяются на две категории:
· простые модели, характеризуемые малым количеством параметров, которые можно указать непосредственно на схеме в виде атрибутов (например, модель резистора описывается одним – тремя параметрами, причем часть из них можно сделать на схеме невидимыми, чтобы не загромождать чертеж);
· сложные модели, характеризуемые большим количеством параметров, которые заносятся в библиотеки моделей (например, модель биполярного транзистора характеризуется 52 параметрами).
В программе МС7 используется двоякое описание моделируемого устройства: в виде чертежа его принципиальной электрической или функциональной схемы или в виде текстового описания в формате SPICE. Кроме того, при составлении принципиальной схемы часть параметров моделей компонентов задаются в виде их атрибутов и указываются непосредственно на схеме — такие модели будем называть моделями в формате схем. Остальные модели задаются в текстовом окне с помощью директив .MODEL и .SUBCKT по правилам SPICE — их так и будем называть моделями в формате SPICE. В программе МС7 модели всех полупроводниковых приборов, операционных усилителей, магнитных сердечников, линий передачи и компонентов цифровых устройств имеют формат SPICE.
В меню компонентов в раздел пассивные компоненты (Passive components) включены резисторы, конденсаторы, индуктивности, линии передачи, высокочастотные трансформаторы, взаимные индуктивности, диоды и стабилитроны.
Обратим внимание, что значения сопротивлений, емкостей и индуктивностей могут быть числом или выражением, зависящим от времени, узловых потенциалов, разности узловых потенциалов или токов ветвей, температуры и других параметров (причем непосредственная зависимость параметров от времени в программе PSpice не предусмотрена, здесь Micro-Cap явно лидирует).
1. Резистор (Resistor)
Формат схем МIСROCAP-7:
Атрибут PART: <имя> ;позиционное обозначение
Атрибут VALUE: <значение> [ТС=<ТС1>[,<ТС2>]] ;величина сопротивления
Атрибут MODEL: [имя модели]
Атрибут FREQ: [<выражение>] — например 10*f*v(10), при этом значение атрибута FREQ заменяет значение атрибута VALUE при расчете режима по постоянному току и проведении АС-анализа (здесь f — частота), при расчете переходных процессов сопротивление резистора равно значению атрибута VALUE;
SLIDER_MIN — минимальное относительное значение сопротивления, изменяемого в режиме Dynamic DC с помощью движкового регулятора;
SLIDER_MAX — максимальное относительное значение сопротивления, изменяемого в режиме Dynamic DC с помощью движкового регулятора;
Сопротивление резистора, определяемое параметром <значение>, может быть числом или выражением, включающим в себя изменяющиеся во времени переменные, например 100+V(10)*2. Эти выражения можно использовать только при анализе переходных процессов. В режиме АС эти выражения вычисляются для значений переменных в режиме по постоянному току.
Рис. 1. Окно задания параметров резистора
Параметры, описывающие модель резистора в MICROCAP-7, приведены в табл. 1.
Таблица 1. Параметры модели резистора
Обозначение | Параметр | Размерность | Значение по умолчанию |
R | Масштабный множитель сопротивления | — | 1 |
ТС1 | Линейный температурный коэффициент сопротивления | °C-1 | 0 |
ТС2 | Квадратичный температурный коэффициент сопротивления | °C-2 | 0 |
ТСЕ | Экспоненциальный температурный коэффициент сопротивления | %/°C | 0 |
NM | Масштабный коэффициент спектральной плотности шума | — | 1 |
T_MEASURED | Температура измерения | °C | — |
T_ABS | Абсолютная температура | °C | — |
T_REL_GLOBAL | Относительная температура | °C | — |
T_REL_LOCAL | Разность между температурой устройства и модели-прототипа | °C | — |
Если в описании резистора <имя модели> опущено, то его сопротивление равно параметру <сопротивление> в Омах. Если <имя модели> указано и в директиве .MODEL отсутствует параметр ТСЕ, то температурный фактор равен
TF = 1 + ТС1×(Т – TNOM)+TC2×(T – TNOM)2;
если параметр ТСЕ указан, то температурный фактор равен
TF =1,01TCE(T-TNOM) .
Здесь Т — текущее значение температуры (указывается по директиве .TEMP); TNOM = 27 °С — номинальная температура (указывается в окне Global Settings).
Параметр <значение> может быть как положительным, так и отрицательным, но не равным нулю. Сопротивление резистора определяется выражением:
<значение>*R*ТF*МF,
где МF=1±<разброс в процентах, DEV или LOT>/100.
Спектральная плотность теплового тока резистора рассчитывается по формуле Найквиста:
Si(f)=4kT/<сопротивление>*NM.
Для резисторов с отрицательным сопротивлением в этой формуле берется абсолютное значение сопротивления.
Формат схем МIСROCAP:
Атрибут PART: <имя>
Атрибут VALUE: <значение> [IC=< начальное значение напряжения>]
Атрибут MODEL: [имя модели]
Атрибут FREQ: [<выражение>] — например 10*SQRT(f), при этом значение атрибута FREQ заменяет значение атрибута VALUE при проведении АС-анализа (здесь f — частота), при расчете переходных процессов емкость конденсатора равна значению атрибута VALUE.
Емкость конденсатора, определяемая параметром <значение>, может быть числом или выражением, включающее в себя изменяющиеся во времени переменные, например 100+V(10)*0.002*TIME. Эти выражения можно использовать только при анализе переходных процессов. В режиме АС это выражение вычисляется для значений переменных в режиме по постоянному току.
Рис. 2. Окно задания параметров конденсатора
Параметры модели конденсатора приведены в табл. 2.
Таблица 2. Параметры модели конденсатора
Обозначение | Параметр | Размерность | Значение по умолчанию |
С | Масштабный множитель емкости | — | 1 |
VC1 | Линейный коэффициент напряжения | В–1 | 0 |
VC2 | Квадратичный коэффициент напряжения | В–2 | 0 |
ТС1 | Линейный температурный коэффициент емкости | °С–1 | 0 |
ТС2 | Квадратичный температурный коэффициент емкости | °С–2 | 0 |
T_MEASURED | Температура измерения | °С | — |
T_ABS | Абсолютная температура | °С | — |
T_REL_GLOBAL | Относительная температура | °С | — |
T_REL_LOCAL | Разность между температурой устройства и модели-прототипа | °С | — |
Если в описании конденсатора <имя модели> опущено, то его емкость равна параметру <значение> в фарадах, в противном случае она определяется выражением
<значение>×С×(1 +VC×V+VC2×V2)[1 +TC1×(T-TNOM)+TC2×(T-TNOM)2].
Здесь V — напряжение на конденсаторе при расчете переходных процессов. При расчете частотных характеристик (режим АС) емкость считается постоянной величиной, определяемой в рабочей точке по постоянному току.
ФорматсхемМIСROCAP-7:Атрибут PART: <имя>
Атрибут VALUE: <значение> [IС=<начальный ток>]
Атрибут MODEL: [имя модели]
Атрибут FREQ: [<выражение>] — например 10u*(F/100), при этом значение атрибута FREQ заменяет значение атрибута VALUE при проведении АС-анализа (здесь F — частота), при расчете переходных процессов индуктивность равна значению атрибута VALUE.
Индуктивность, определяемая параметром <значение>, может быть числом или выражением, включающее в себя изменяющиеся во времени переменные, например 100+I(L2)*2. Эти выражения можно использовать только при анализе переходных процессов. В режиме АС эти выражения вычисляется для значений переменных в режиме по постоянному току.
Параметры модели индуктивности приведены в табл. 3.
Таблица 3 Параметры модели индуктивности
Обозначение | Параметр | Размерность | Значение по умолчанию | ||||
L | Масштабный множитель индуктивности | — | 1 | ||||
IL1 | Линейный коэффициент тока | А–1 | 0 | ||||
IL2 | Квадратичный коэффициент тока | А–2 | 0 | ||||
ТС1 | Линейный температурный коэффициент индуктивности | °С–1 | 0 | ||||
ТС2 | Квадратичный температурный коэффициент индуктивности | °С–2 | 0 | ||||
T_MEASURED | Температура измерений | °С | — | ||||
Т_АВС | Абсолютная температура | °С | — | ||||
T_REL_GLOBAL | Относительная темпера тура | °С | — | ||||
T_REL_LOCAL | Разность между температурой устройства и модели-прототипа | °С | — |