Смекни!
smekni.com

Подводные камни математики (стр. 1 из 3)

А. Барбараш

По оценкам учёных, практически используется не более 15% математических разработок. Иначе говоря, математики ушли далеко вперёд по отношению к реальным запросам науки и техники. Они создали формальный аппарат, примерно всемеро превышающий потребности сегодняшней науки и цивилизации в целом. Этому можно было бы только радоваться. Однако звуками фанфар часто заглушаются нерешительно высказываемые, но очень существенные претензии пользователей математического аппарата. Рассмотрим их чуть подробнее.

Создав математику для решения практических задач, люди, тем не менее, с самого начала превратили её в сугубо теоретическую дисциплину, абстрагирующуюся от второстепенных деталей. Когда решалась задача о сложении яблок, не учитывалось, все ли они спелые, одного ли сорта и т.д. В задаче о бассейне с тремя трубами никого не интересовало, идёт речь о гончарных трубах или о деревянных, отделан бассейн мрамором или вымощен грубым камнем. Такой подход вполне логичен. Для начального этапа развития наук он методологически безупречен. Но по мере перехода ко всё более крупным задачам, такой подход стал превращаться в источник грубых ошибок.

Особенно трагичным оказалось учащающееся соединение математики с философией. Математическая идеализация затронула важнейший диалектический принцип философии – переход количества в качество. Математика, сплошь и рядом, игнорирует его.

Взглянем, для примера, на один из простейших законов естествознания – закон Архимеда. Видел ли кто-нибудь математическое выражение этого закона, учитывающее размерный диапазон тел? Если решается задача, будет ли плавать некое сплошное тело, не имеющее внутренних пустот, математика отвечает путём сравнения удельных весов жидкости и тела. Формулы говорят, что сплошная стальная болванка гарантированно потонет в воде.

Но сравним этот результат с экспериментом. Положим на спокойную поверхность воды клочок бумаги, а на него – тонкую швейную иглу. Потом другой иглой утопим края бумаги и весь клочок. Игла, получившая от наших рук тонкий слой жира, останется плавать на поверхности воды, удерживаемая силами поверхностного натяжения. Чистое применение к этому случаю закона Архимеда оказалось некорректным. Такая же ситуация сложится, если взять щепотку железных опилок, растереть их между пальцами, и рассыпать по спокойной водной поверхности – большая часть опилок останется плавать.

Подобные отклонения от математических формул широко распространены. Можно считать общим правилом, что подавляющее большинство естественнонаучных законов обладает параметрической локальностью – они справедливы лишь в определённых зонах параметров, для которых, собственно, и выведены. Ньютоновские законы механики справедливы только при скоростях тел, несопоставимых со скоростью света. И наоборот, когда скорости движения тел приближаются к световым, следует переходить от механики Ньютона к преобразованиям Лоренца. Аналогично, обладает параметрической локальностью и сфера дейст-вия квантовой механики – она ограничена диапазоном атомных и молекулярных размеров.

Природа, по выражению Яна Стюарта, „безжалостно нелинейна” [Stewart, 1989]. Многие естественнонаучные законы описываются нелинейными выражениями. Нередки случаи, когда закон линеаризуется, т.е. используется лишь в узком диапазоне параметров, где можно пренебречь нелинейностями. Нарастание же нелинейных отклонений у границ „законной” зоны параметров – это обычное явление, как для линеаризованных, так и для нелинейно выраженных законов. Соответственно, границы разрешённой зоны параметров почти всегда нечётки, размыты, и определяются не дискретными отметками, а ростом погрешностей. Причиной отклонений обычно является вторжение, нарастающее влияние новой закономер-ности, которой можно было пренебрегать в пределах разрешённой зоны параметров.

Упомянут сугубо линейный (казалось бы) закон Архимеда. Но жир от рук экспериментатора, сделал поверхность иглы несмачиваемой, к закону Архимеда добавились силы поверхностного натяжения жидкости, и мы получили плавающую монолитную стальную деталь! Силы поверхностного натяжения действуют и на крупную стальную болванку, брошенную в воду, но при больших размерах болванки влиянием этих сил можно пренебречь – это другая сторона „параметрической локальности” законов!

Нередки ситуации, когда естественнонаучный закон удаётся использовать лишь в крайне узкой зоне параметров. Например, все газовые законы оказываются применимы к парам во-ды лишь значительно выше критической температуры 374˚С, но гораздо ниже температуры диссоциации молекул воды на отдельные атомы. Кроме того, для применения газовых законов к парам воды требуется равенство нулю ультрафиолетового облучения, вызывающего диссоциацию молекул. Такие примеры можно приводить без конца. Скажем, действие внут-риядерных сил ограничено в пространстве потому, что их переносчики – мезоны – имеют малое время жизни, и не успевают значительно удалиться от нуклонов ядра.

К счастью, в практических ситуациях легко избежать ошибок из-за выхода закона за пределы свойственной ему зоны параметров. Хуже обстоит дело с теоретическими изысканиями, где обнаружить ошибки такого рода далеко не просто.

Успехи математики вызвали у некоторых учёных специфическую аномалию – синдром „математического ослепления”. Математическое описание объектов они стали ставить неизмеримо выше собственно свойств объектов, проявляющихся в тех или иных феноменах. По их мнению, если феномен противоречит формулам, то нечего об этом феномене и говорить! К сожалению, такая ситуация не выдумана. А на замечание о недопустимости подобной позиции, о бесполезности подобной математики оппоненты в один голос отвечают железобетонной фразой, что, мол, „каждая наука тем в большей степени наука, чем больше в ней математики!”

Да. Но, ведь, смотря какой математики! Конечно, хорошо иметь удобное математическое описание, правильно и лаконично отображающее рассматриваемый объект. Но какой толк от математического описания, лишь маскирующего наше незнание истинных свойств и истинной природы объекта? Какой толк от искусственно притянутого описания, расходящегося с отдельными фактами?!

Математика начинается с абстракции. В основе самого талантливого математического описания всегда лежит идеализация, между описываемым объектом и формулами всегда остаётся ряд расхождений, неполных соответствий. В реальной жизни, куда математики выдают свои формулы для использования, к абстракциям приходится относиться очень осторожно. При современном уровне развития, когда нас окружили исключительно сложные системы, жизнь, как правило, требует скрупулёзного учёта всех подробностей, что противоречит „невинному” абстрагированию.

Одной из главных задач математики является создание формального языка для точного и лаконичного описания закономерностей Природы. Математики убеждены, что их наука отлично выполняет эту миссию. Однако, при том, что подавляющее большинство законов Природы реально применимо лишь в ограниченной области параметров, формальный аппарат математики не только не учитывает эту важнейшую особенность, но ещё и маскирует её, искажает действительность обманчиво „всеобъемлющими” формулами, представляемыми „в общем виде”. В итоге, учёные, сплошь и рядом не замечающие подвоха „всеобъемлющих” формул, часто выходят за пределы диапазонов действия тех или иных законов. Хотя матема-тика могла бы, и должна была бы защитить инженера и учёного от болезненных ошибок такого рода, она эту функцию совершенно не выполняет! Особенно тревожная ситуация воз-никает при учащающихся разработках гибридных, философско-математических моделей.

Формулами „в общем виде” математика породила иллюзию, будто любые допускаемые правилами математики манипуляции соответствуют свойствам Природы, и будто такими манипуляциями можно неограниченно познавать её закономерности. Анализ математических выражений, действительно, часто приводит к новым, значимым результатам, и это подкреп-ляет ошибочное убеждение исследователей в полной надёжности и методологической безупречности такого пути, ведёт к крупным и трудно обнаруживаемым промахам.

Важно помнить, что математические выражения являются лишь инструментом познания и отображения реальности, но не самой реальностью. Они отображают лишь то, что мы в них вкладываем, независимо от специфики, области применения, правильности или неправильности исходных данных. С одинаковым успехом может быть построена евклидова и неевклидова геометрия, при чём успех каждого построения отнюдь не говорит о степени адек-ватности математического аппарата реальным свойствам нашего мира. Он говорит лишь о внутренней логической стройности математических построений.

Игнорирование математикой параметрической локальности естественных законов, маскировка этой локальности – создают у исследователей ложное впечатление о границах применимости тех или иных формул. Результатом становятся попытки переноса идеологий одного параметрического диапазона в совершенно иной диапазон. Как пример, можно назвать разработку одного из астрофизиков, дающую подкупающе простое объяснение температуры реликтового излучения.

В устойчиво существующей звезде должно соблюдаться равновесие между силой тяжести и давлением света. На этом основании выведена формула Эддингтона для предела светимости звёзд. В формулу входят радиус и масса звезды, радиус и масса протона и несколько ми-ровых констант типа постоянной Планка, гравитационной постоянной и скорости света. Результатом является температура, выше которой световое давление разрушает звезду.

Загипнотизированный математикой астрофизик подставил в формулу вместо параметров протона – параметры Солнца, а вместо параметров звезды – так называемые хаббловский радиус и массу, характеризующие Вселенную. В результате была вычислена температура Вселенной, как звезды. Эта температура оказалась очень близкой к температуре реликтового из-лучения – с точностью до нашего знания средней плотности Вселенной.