Смекни!
smekni.com

Перемешивание жидкостей (стр. 2 из 4)

Если через некоторое время в периодически меняющемся потоке частица возвращается точно в свое первоначальное положение, то она определяет так называемую периодическую точку. В зависимости от числа периодов, необходимых для возврата частицы в первоначальное положение, эти точки называют периодическими с периодом один, два и т. д. Их можно классифицировать так же, как эллиптические и гиперболические в зависимости от направления потока в непосредственной близости от них.

Поскольку эллиптическая периодическая точка циклически движется по замкнутой траектории, частицы жидкости вблизи этой точки не только циркулируют вокруг нее (как это было бы в случае неподвижной эллиптической точки), но и перемещаются вместе с ней. Однако, несмотря на то, что в этой области частицы жидкости совершают вращательное и поступательное движения, перемещения вещества в остальную часть жидкости не происходит. Такие области видны как «островки»; перемешивание в них идет медленно. Поскольку вещество не может ни войти, ни покинуть окрестность эллиптической периодической точки, такие точки представляют собой препятствия для эффективного перемешивания.

Подобным образом при циклическом движении гиперболической периодической точки окружающее ее вещество, движущееся вместе с этой точкой, испытывает сокращение в одном направлении и вытягивание в другом. При этом точка как бы выталкивает наружу вытянутые участки в одном направлении и втягивает вещество с другого направления. (Если считать жидкость несжимаемой, вытягивания и сокращения должны компенсировать друг друга.)

Следы хаоса

Куда уходит вещество от гиперболической периодической точки? Откуда оно приходит? Одна из возможностей состоит в том, что втекающий поток непрерывно переходит в вытекающий, т. е. материал, вышедший из гиперболической точки, приходит обратно к ней или к другой гиперболической точке. Именно такой механизм осуществляется в стационарных потоках (когда гиперболические точки фиксированы и не являются периодическими), поэтому эффективного вытягивания и образования складок не происходит.

Нестационарные двумерные потоки могут приводить к эффективному перемешиванию, поскольку в этом случае отток, связанный с одной гиперболической периодической точкой, может пересекать область вытекающего потока этой же или какой-либо другой гиперболической точки. Точку, в которой пересекаются втекающий и вытекающие потоки, связанные с одной гиперболической точкой, называют трансверсальной гомоклинной точкой. Если эти пересекающиеся потоки связаны с двумя разными гиперболическими точками, то точку пересечения потоков называют трансверсальной гетероклинной точкой.

Рис 3.ПЕРЕМЕШИВАНИЕ ЖИДКОСТЕЙ в природных явлениях и производственных процессах происходит как в результате вытягивания и образования складок, так и под влиянием диффузии и разрушения капель. Только в идеальном случае окрашенная капля (слева вверху) может бесконечно вытягиваться и складываться, не испытывая разрывов и не диффундируя в соседние области (вверху справа). Интересно, что в такой гипотетической ситуации для достижения эффективного перемешивания часть такой пробной капли должна вернуться в исходное положение. Процессы молекулярной диффузии (без которых невозможно эффективное перемешивание) обычно приводят к размыванию границ между двумя растворимыми жидкостями (слева внизу). В случае нерастворимых жидкостей пробная капля может разрушиться на множество брызг, которые затем сливаются в капли меньшего размера, чем исходная (справа внизу).

Гомоклинные и гетероклинные пересечения — характерные следы хаоса. С математической точки зрения система, в которой могут возникать подкововидные структуры или транс-версальные гомо- или гетероклинные пересечения, может считаться хаотической. Оказывается, что в потоке, описываемом подкововидной структурой, обязательно должны присутствовать трансверсальные гомо-клинные точки; точно так же наличие хотя бы одной такой точки означает, что поток описывается подкововидной структурой.

Оказывается, даже единственное пересечение втекающего и вытекающего потоков с неизбежностью приводит к появлению трансверсальных гомоклинных точек и что подобные пересечения могут возникать даже в таких «хороших» системах, как системы, описываемые законами движения Ньютона. Этот факт впервые был открыт в XIX в. французским математиком Анри Пуанкаре. Однако сложность анализа течения жидкости при наличии такого пересечения (подобное состояние системы сейчас называют хаосом) поразила Пуанкаре, и он решил больше не заниматься этой проблемой.

Если перемешивание может быть представлено детерминированным точечным преобразованием, оно должно быть кинематически обратимым. Иными словами, совершив все движения в обратном порядке, можно было бы разделить смешанные жидкости (если пренебречь молекулярной диффузией). Однако повседневный опыт показывает, что смешивание необратимо. Даже если теоретически система детерминирована, движения, приводящие к повторяющимся вытягиваниям и образованию складок, не могут быть обращены во времени.

Подобная ситуация встречается и в других физических системах. Примером может служить изученная Пуанкаре система, состоящая из большого числа частиц, относительное движение которых описывается детерминированными уравнениями (так называемыми гамильтоновыми уравнениями). Выдающийся американский физик XIX в. Дж. Уиллард Гиббс пришел к выводу, что даже гамильтоновым системам присущи необратимость и непредсказуемость. Показательно в этом отношении, что для иллюстрации необратимости им был предложен гипотетический эксперимент, в котором рассматривалось перемешивание. По-видимому, вывод Гиббса оставался незамеченным до тех пор, пока в 1955 г. в одном из журналов не была опубликована статья шведского океанолога П. Велландера.

Хаос в потоках жидкости

Значение вытягивания и изгиба в процессе перемешивания стало понятно специалистам по химической технологии еще в 50-х годах, после того как была опубликована первая работа на эту тему Р. Спенсера и Р. Уайлииз Dow Chemical Company и У. Мора с сотрудниками из Е.I. du Pont de Nemours & Company, Inc. Результат этой работы — доказательство существования подкововидных контурных диаграмм и гомоклинных и гетероклинных точек — оставался неоцененным в полной мере до недавнего времени.

Первым, кто указал на прямую связь между хаосом и потоками жидкости, был советский математик В.И. Арнольд. В 1965 г. Арнольд предположил, что в жидкостно-механических системах траектории частиц могут быть хаотическими. Французский астроном из Обсерватории в Ницце М. Эно развил идею Арнольда и в статье объемом всего три страницы с одним рисунком смог показать, что стационарный трехмерный поток жидкости, не обладающей вязкостью, может сформировать хаотические линии тока.

В 1984 г. X. Ареф из Университета Брауна обнаружил, что уравнения, описывающие траектории частиц жидкости в двумерном потоке, формально идентичны уравнениям, описывающим гамильтоновы системы. Развивая это наблюдение путем компьютерного моделирования, он доказал, что в гамильтоновой системе под действием периодически меняющихся сил может происходить эффективное перемешивание.

Если в трехмерном случае прямой связи между перемешиванием и гамильтоновой системой не существует, для двумерных систем эта связь однозначна: перемешивание жидкости можно рассматривать как наглядное проявление хаотического поведения гамильтоновой системы. Работа Арефа и простота лабораторного изучения двумерных систем по сравнению с трехмерными вдохновили меня на эксперименты по наблюдению признаков хаоса. Мы использовали специальный прибор для изучения потоков в замкнутой полости, который был сконструирован в 1983 г. совместно с моими студентами в Амхерсте.