Смекни!
smekni.com

Существование решения дифференциального уравнения и последовательные приближения

Курсовая работа

Выполнил студент 2 курса 1222 группы Труфанов Александр Николаевич

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный университет»

Механико-математический факультет

Кафедра дифференциальных уравнений и теории управления

Самара 2004

Теорема существования и единственности решения уравнения

Пусть дано уравнение

с начальным условием

Пусть в замкнутой области R

функции
и
непрерывны). Тогда на некотором отрезке
существует единственное решение, удовлетворяющее начальному условию
.

Последовательные приближения определяются формулами:

k = 1,2....

Задание №9

Перейти от уравнения

к системе нормального вида и при начальных условиях

,
,

построить два последовательных приближения к решению.

Произведем замену переменных

;

и перейдем к системе нормального вида:

Построим последовательные приближения

Задание №10

Построить три последовательных приближения

к решению задачи

,

Построим последовательные приближения

Задание №11

а) Задачу

,

свести к интегральному уравнению и построить последовательные приближения

б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.

Сведем данное уравнение к интегральному :

Докажем равномерную сходимость последовательных приближений

С помощью метода последовательных приближений мы можем построить последовательность

непрерывных функций, определенных на некотором отрезке

, который содержит внутри себя точку
. Каждая функция последовательности определяется через предыдущую при помощи равенства

i = 0, 1, 2 …

Если график функции

проходит в области Г, то функция
определена этим равенством, но для того, чтобы могла быть определена следующая функция
, нужно, чтобы и график функции
проходил в области Г. Этого удается достичь, выбрав отрезок
достаточно коротким. Далее, за счет уменьшения длины отрезка
, можно достичь того, чтобы для последовательности
выполнялись неравенства:

, i = 1, 2, …,

где 0 < k < 1. Из этих неравенств вытекает следующее:

, i = 1, 2, …,

Рассмотрим нашу функцию на достаточно малом отрезке, содержащим

, например, на
. На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:

что и является условием равномерной сходимости последовательных приближений.

С другой стороны, на нашем отрезке выполняется

, что также совершенно очевидно. А так как последовательность
сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.

Список литературы

Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961

А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998

О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999

А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998