Иными словами, разработка и введение алгебраической символики сделали математику более демократичной.
Уравнения, по утверждению Декарта, представляют собой равные друг другу суммы известных и неизвестных членов или же, если рассматривать эти суммы вместе, равны «ничему» (нулю). Декарт указал, что «уравнения часто удобно рассматривать именно последним образом», т. е. в виде Р (х) = 0. Для теоретических построений Декарта такая запись уравнений играла важную роль.
Этой формой он пользовался при установлении числа корней алгебраического уравнения, что привело к формулировке основной теоремы алгебры: число корней уравнения (положительных - «истинных», отрицательных - «ложных» и мнимых - «воображаемых») равно числу единиц в наивысшем показателе степени входящей в уравнение неизвестной величины. Справедливость теоремы он аргументировал тем, что при перемножении n двучленов вида х – а получается многочлен степени n. Недостающие «воображаемые» корни, природу которых Декарт не разъясняет, можно примыслить.
Если все корни положительны, то, по словам Декарта, дело обстоит так: «Знайте, что всякое уравнение может иметь столько же различных корней или же значений неизвестной величины, сколько последняя имеет измерений; ибо если, например, принять х равным 2, или же х – 2 равным ничему, а также х = 3 или же х – 3 = 0, то, перемножив оба эти уравнения x – 2 = 0 и x – 3 = 0, мы получим хх – 5х + 6 = 0, или же хх = 5x – 6, уравнение, в котором величина х имеет значение 2 и вместе с тем значение 3.
Если принять еще, что х – 4 = 0 и умножить это выражение на хх – 5x + 6 = 0, то мы получим х3 – 9хх + 2бх – 24 = 0, другое уравнение, в котором х, обладая тремя измерениями, имеет вместе с тем три значения, а именно 2, 3 и 4»
Если же «х выражает собой также недостаток какой-нибудь величины, скажем 5, то мы получим х + 5 = 0». Умножив х + 5 на левую часть предыдущего уравнения и приравняв результат нулю, получим
x4– 4x3– 19xx + 10бх – 120 = 0, (1)
«уравнение, у которого четыре корня, именно три истинных 2, 3, 4 и один ложный –5».
Построение левой части уравнения в виде произведения двучленов приводит к тому, что степень уравнения можно понизить, разделив левую часть его на х – a, где а – корень уравнения. С другой стороны, если такое деление невозможно, то число а не будет корнем уравнения. Левую часть уравнения (1), например, можно разделить на х – 2, х – 3, х – 4, х + 5 и нельзя разделить на любой другой двучлен х – а; «это показывает, что оно может иметь лишь четыре корня: 2, 3, 4 и –5».
Декарт сформулировал правило знаков, дающее возможность установить число положительных и отрицательных корней уравнения: «Истинных корней может быть столько, сколько раз в нем изменяются знаки + и –, а ложных столько, сколько раз встречаются подряд два знака + или два знака –». Впоследствии он внес уточнение: при наличии мнимых («невозможных») корней уравнения число положительных корней может (а не должно) быть равным числу перемен знаков. Декарт высказал правила и на примерах показал, какие следует выполнять преобразования, чтобы изменить знаки корней уравнения, увеличить или уменьшить корни, получить уравнение, не содержащее второго члена, и т. д. «Легко, далее, сделать так, чтобы все корни одного и того же уравнения, бывшие ложными, стали истинными, и вместе с тем все бывшие истинными стали ложными; именно это можно сделать, изменив на обратные все знаки + или –, стоящие на втором, четвертом, шестом и других, обозначенных четными местах, не изменяя знаки первого, третьего, пятого и им подобных, обозначенных нечетными числами мест».
Применив такое преобразование к уравнению (1), получим уравнение
х4 + 4x3 - 19хх – 106x - 120 = 0, (2)
имеющее один положительный корень 5 и три отрицательных: –2, –3, –4.
Можно, не зная корней уравнения, увеличить или уменьшить их на какую-либо величину, для чего необходимо сделать соответствующую замену. Например, уравнение (2) после замены х = у – 3 преобразуется к виду y3– 8у2 – у + 8 == 0; его положительный корень 8 превышает положительный корень уравнения (2) на 3.
Декарт заметил, что, «увеличивая истинные корни, мы уменьшаем ложные и наоборот», при этом он имел в виду абсолютные величины корней.
Правило исключения второго члена уравнения, известное еще Виету, Декарт иллюстрировал примерами.
Так, уравнение y4+ 16y3 + 71y2 – 4y –120 = 0 подстановкой z – 4 = у он сводил к
z4 – 25z2– 60z – 36 = 0; его корни –3, -2, -1, 6.
Второй член уравнения x4 - 2ах3 + х2 (2а2 - с2) - 2aзx + а4 = 0 он исключал подстановкой х = z +
aего к виду z4 + z2 ( a2 – c2) – z (a3 + ac2) + a4 – a2c2 = 0.Декарт говорил, что можно также «сделать, чтобы все ложные корни уравнения стали истинными, но истинные не стали ложными». Он утверждал, что легко приблизительно оценить величину неизвестных отрицательных корней уравнения. В этом можно усмотреть постановку вопроса о границах действительных корней уравнения, которому впоследствии уделил большое внимание Ньютон.
Для умножения и деления неизвестных корней уравнения на число, приведения дробных и иррациональных коэффициентов к целым Декарт пользовался теми же подстановками, которые были известны и Виету. Рассмотрим пример.
Если положить у = х
и z = 3у, то уравнениеx3 – x2
+ x – = 0преобразуется последовательно в уравнение
y3 – 3y2 +
y – = 0, а затем в z3– 9z2 + 26z– 24 = 0.Корни окончательного уравнения 2, 3, 4; предыдущего –
, 1, ; первого – , , .О «воображаемых» (мнимых) корнях уравнения Декарт писал: «Как истинные, так и ложные корни не всегда бывают действительными, оказываясь иногда лишь воображаемыми. Другими словами, хотя всегда можно вообразить себе у каждого уравнения столько корней, сколько я сказал, но иногда не существует ни одной величины, которая соответствует этим воображаемым корням. Так, например, хотя у уравнения х3 – 6xx + 13x–10 = 0 можно вообразить себе три корня, но на самом деле оно имеет только один действительный, именно 2. Что касается двух других корней, то сколько бы их ни увеличивать, уменьшать или умножать так, как я только что объяснил, все равно их не удастся сделать иными, чем воображаемыми».
Еще одна чрезвычайно важная задача алгебры была поставлена Декартом – задача приводимости уравнений, т. е. представления целого многочлена с рациональными (целыми) коэффициентами в виде произведения многочленов низших степеней. Декарт установил, что корни уравнения третьей степени с целыми коэффициентами и старшим коэффициентом, равным единице, строятся с помощью циркуля и линейки (иначе говоря, уравнение разрешимо в квадратных радикалах) тогда и только тогда, когда уравнение имеет целый корень (т. е. левая часть его может быть представлена в виде произведения множителей первой и второй степеней).
Для уравнения четвертой степени он также указал условие разрешимости; оно состоит в разрешимости его кубической резольвенты, т. е. соответствующего уравнения шестой степени, кубического относительно у2.
Декарт не показал, как он получил окончательный результат. Ф. Схоотен вывел резольвенту с помощью метода неопределенных коэффициентов. Он представил многочлен четвертой степени в виде x4 – px2 – qx + r = (x2 + yx + z)(x2 – yx +v), откуда получил уравнения для нахождения у, z, у: z – y2 + v = –p, –zy+vy = –q, vz = r.
Разрешающее уравнение (резольвента) имеет вид у6 – 2ру4 + (р2 – 4г)y2 – q2 = 0.
В конце третьей книги «Геометрии» Декарт графически решал уравнения третьей, четвертой, пятой и шестой степеней, отыскивая их корни как пересечение некоторых линий.
Вклад Декарта в математику не ограничивается одной «Геометрией»: в его переписке содержатся решения многих задач, в том числе связанных с бесконечно малыми.
§3 Обозначение производной и интеграла у Лейбница и развитие анализа.
Лейбниц внес большой вклад в развитие математического анализа. Ему принадлежит создание многих символов, которые мы используем сейчас, например, dx, ddx,…, d2x, d3x,
, . Но символы эти появились у Лейбница не сразу. Первоначально выражение = хu (1)у него выглядело следующим образом: omn. xw = ult. х×omn. w – omn. omn. w. При этом он еще не употреблял привычного нам знака равенства.