Рис.2. Нестандартное матричное умножение при вейвлет-анализе.
Различные уровни оказались полностью развязанными, потому что в матрице теперь полностью отсутствуют блоки, которые ранее перепутывали их. Блок с SS-элементами извлечен, а на его место вставлена нулевая матрица. Полная матрица соответстваенно искусственным образом увеличилась. Вместе с ней увеличились и векторы, характеризующие функции f и g. Теперь здесь удерживаются все промежуточные s-коэффициенты вейвлет-разложения функции f. Каждый блок Sj+1 получается из Sj и Dj. В матрице преобразования равны нулю все SS-элементы за исключением их величин на низшем уровне S0S0. Все остальные SD-, DS-, DD-матрицы почти диагональны вследствие конечности области задания вейвлетов и скейлинг функций. Приведенная на рис. 2 форма функции g преобразуется в ее обычное вейвлет-представление из рис. 1 путем разделения каждого Sj в Sj-1 и Dj-1 стандартным методом. Затем эти Sj-1 и Dj-1 добавляются в соответствующие компоненты вектора. Эта процедура итерируется, начиная теперь уже с Sj-1, вполоть до S0, когда мы приходим к обычному вейвлет-представлению функции g. Таким способом мы избавляемся от всех s-коэффициентов за исключением s0. Вычисления можно теперь проделать очень быстро.
4.2 Обращение матрицы
Утверждение 1. Последовательность матриц Xk такова, что
Xk+1=2Xk -XkАXk, (4.2.1)
X0=aА*, (4.2.2)
где А* - сопряженная матрица и a выбирается таким образом, чтобы наибольшее собственное значение матрицы aА*А меньше двух. Тогда последовательность сходится к обобщенной обратной матрице А-1.
Если это утверждение скомбинировать с алгоритмом быстрого матричного умножения, то получается алгоритм для построения обратной матрицы в стандартной форме с трудоемкостью
4.3 Вычисление экспоненты, синуса и косинуса от матрицы.
При обращения матрицы использовался ранее известный алгоритм, который выходит на совершенно иной уровень, когда применяется вместе с вейвлет-представлением.
Алгоритм вычисления экспоненты матрицы основывается на тождестве
Во-первых, exp(2-LA) может быть посчитана, например, с помощью ряда Тейлора. Число L выбирается таким образом, чтобы наибольшее сингулярное число матрицы 2-LA было меньше единицы. На втором шаге алгоритма для достижения результата матрица 2-LA возводится в квадрат L раз.
Аналогично, синус и косинус от матрицы могут быть посчитаны с исподьзованием формул двойного угла.
при l=0,…,L-1
где I – тождество. Снова выбираем L таким образом, чтобы наибольшее сингулярное число матрицы 2-LA было меньше единицы, вычисляем синус и косинус матрицы 2-LA, с помощью рядов Тейлора, а затем используем формулы (4.3.4) и (4.3.5).
Обычно такие алгоритмы требуют по меньшей мере O(N3) операций, так как должне быть выполнено достаточно много операций по умножению густых матриц. Быстрый алгоритм для умножения матриц в стандартной форме уменьшает сложность до не более чем
Списоклитературы
Beylkin G. Wavelets and Fast Numerical Algorithms.
Beylkin G. Wavelets, Multiresolution Analysis and Fast Numerical Algorithms.
Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их использование // Успехи физических наук – 2001, №5. – С.465-500