Смекни!
smekni.com

Теория игр и принятие решений (стр. 1 из 4)

В зависимости от условий внешней среды и степени информативности лица принимающего решение (ЛПР) производится следующая классификация задач принятия решений:

а) в условиях риска;

б) в условиях неопределённости;

в) в условиях конфликта или противодействия (активного противника).

Теория полезности и принятия решений.

Принятие решений в условиях риска.

Критерий ожидаемого значения.

Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчётные формулы. Математически это выглядит так: пусть Х– случайная величина с математическим ожиданием MX и дисперсией DX. Если x1,x2,...,xn– значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений

имеет дисперсию
. Таким образом, когда n®¥

® 0 и
®MX.

Другими словами при достаточно большом объёме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.

Пример 1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.

Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент ”риска”.

Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение Т, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчёте на один интервал времени.

Пусть рt– вероятность выхода из строя одной ПЭВМ в момент t, а nt– случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С1 – затраты на ремонт неисправной ПЭВМ и С2 – затраты на профилактический ремонт одной машины.

Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят

ОЗ =

,

где M(nt) – математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как nt имеет биномиальное распределение с параметрами (n, pt), то M(nt) = npt . Таким образом

ОЗ =

Необходимые условия оптимальности T* имеют вид:

ОЗ (T*-1) ³ ОЗ (T*),

ОЗ (T*+1) ³ ОЗ (T*).

Следовательно, начиная с малого значения T, вычисляют ОЗ(T), пока не будут удовлетворены необходимые условия оптимальности.

Пусть С1 = 100; С2 = 10; n = 50. Значения pt имеют вид:

T рt
ОЗ(Т)
1 0.05 0
2 0.07 0.05 375
3 0.10 0.12 366.7
4 0.13 0.22 400
5 0.18 0.35 450

T*® 3 , ОЗ(Т*) ® 366.7

Следовательно профилактический ремонт необходимо делать через T*=3 интервала времени.

Критерий “ожидаемое значение – дисперсия”

Критерий ожидаемого значения можно модифицировать так, что его можно будет применить и для редко повторяющихся ситуаций .

Если х – с. в. с дисперсией DX, то среднее арифметическое

имеет дисперсию
, где n– число слогаемых в
. Следовательно, если DX уменьшается, и вероятность того, что
близко к MX, увеличивается. Следовательно, целесообразно ввести критерий, в котором максимизация ожидаемого значения прибыли сочетается с минимизацией её дисперсии.

Пример 2. Применим критерий “ожидаемое значение – дисперсия” для примера 1. Для этого необходимо найти дисперсию затрат за один интервал времени, т.е. дисперсию

зТ =

Т.к. nt, t =

– с.в., то зТ также с.в. С.в. ntимеет биномиальное распределение с M(nt) = nptи D(nt) = npt(1–pt). Следовательно,

D(зТ) = D(

) =
D(
) =

=

=
= n
{
},

где С2n = const.

Из примера 1 следует, что

М(зТ) = М(з(Т)).

Следовательно искомым критерием будет минимум выражения

М(з(Т)) + к D(зТ).

Замечание. Константу “к” можно рассматривать как уровень не склонности к риску, т.к. “к” определяет “степень возможности” дисперсии Д(зТ) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать “к” много больше 1. Это придаёт больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.

При к =1 получаем задачу

По данным из примера 1 можно составить следующую таблицу

Т pt pt2
М(з(Т))+D(з(Т))
1 0.05 0.0025 0 0 500.00
2 0.07 0.0049 0.05 0.0025 6312.50
3 0.10 0.0100 0.12 0.0074 6622.22
4 0.13 0.0169 0.22 0.0174 6731.25
5 0.18 0.0324 0.35 0.0343 6764.00

Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т*=1.

Критерий предельного уровня.

Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий.

Пример 3. Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задаётся непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери.

Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала А1 единиц, а величина ожидаемых излишков не превышала А2 единиц. Иными словами, пусть I– искомый уровень запасов. Тогда

ожидаемый дефицит =

,

ожидаемые излишки =

.

При произвольном выборе А1 и А2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость.

Пусть, например,

Тогда

=
= 20(ln
+
– 1)