Экспериментальные основания теории относительности
Валерий Петров
Основной постулат теории относительности Эйнштейн изложил следующим образом:
...не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя... для всех координатных систем, для которых справедливы уравнения механики, справедливы те же электродинамические и оптические законы... Это предположение (содержание которого в дальнейшем будет называться «принципом относительности») мы намерены превратить в предпосылку...
Предположим, например, что на движущемся судне выполняются опыты по определению скорости звука на открытой палубе и в закрытом помещении – каюте или трюме судна. Законы механики «справедливы» как в одном, так и в другом случае, однако в первом случае – при выполнении опытов на открытой палубе – нужно учитывать скорость движения судна, тогда как в другом – при выполнении опытов в закрытом помещении – нет. Независимость явлений, происходящих в некоторой системе, от состояния покоя системы или ее равномерного и прямолинейного движения и составляет суть принципа относительности для явлений механики, который Ньютон изложил следующим образом:
Относительные движения друг по отношению к другу тел, заключенных (подчеркнуто мной – В.П.) в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.
Таким образом, в механике Ньютона принцип относительности оказывается верным не для всех координатных систем, движущихся равномерно и прямолинейно без вращения, но только для таких, в которых тела оказываются «заключенными» в этих системах.
Как подчеркивал Галилей, при выполнении каких-либо опытов в закрытой каюте движущегося судна движение судна «обще» всем предметам, также и воздуху (в каюте – В.П.):
...Уединитесь с кем-либо из друзей в просторное помещение под палубой корабля... движение корабля обще всем находящимся на нем предметам, также и воздуху (в помещении под палубой корабля – В.П.).
Предположим, далее, что на открытой палубе движущегося судна установлена какая-то емкость с жидкостью. И в этом случае скорость звука в жидкости также будет одинаковой независимо от скорости движения судна, поскольку и в этом случае движение судна «обще» и емкости, и находящейся в ней жидкости. Таким образом, явления механики будут одинаковы в том случае, когда состояние покоя или равномерного и прямолинейного движения координатной системы, в которой описываются эти явления, и состояние покоя или движения среды, заполняющей эту систему, будут «общими». Чтобы подчеркнуть это обстоятельство, введем понятие «замкнутой физической системы», как такой системы, движение которой полностью передается среде, заполняющей эту систему. Тогда независимость явлений механики от состояния движения такой системы, или принцип относительности, можно сформулировать следующим образом:
Явления механики, происходящие в замкнутой системе координат, одинаковы, покоится эта система или же движется равномерно и прямолинейно без вращения.
Теперь, если мы хотим распространить или обобщить принцип относительности для явлений механики также и на оптические и электродинамические явления, необходимо установить, прежде всего, возможность существования замкнутых систем относительно некоторой среды, заполняющей мировое пространство и «пронизывающей собой», как выразился Эйхенвальд, все тела, назовем ли мы эту среду «физическим вакуумом» или «светоносным эфиром», разумеется, если такая среда вообще существует и движение относительно этой среды сопровождается какими-либо явлениями, соответствующими скорости такого движения. Известно, что Эйнштейн исходил из предположения, что «светоносный эфир» вообще не существует, поэтому вопрос о возможности существования замкнутых по отношению к «светоносному эфиру» систем у него вообще не возникал. Современная наука считает, что «светоносный эфир» и физический вакуум – два различных названия одной и той же реальной физической среды. Вместе с тем, общепризнанным (что не обязательно означает – правильным) является мнение, что движение относительно этой среды не сопровождается какими-либо оптическими или электродинамическими явлениями. Посмотрим, насколько это мнение соответствует реальной физической действительности.
В 1838г. Фарадей предположил, «...что если подвесить заряженный шар и заставить его двигаться в определенном направлении, то эффект будет равен тому, как если бы мы возбудили ток в направлении движения шара» [1]. Следовательно, электрический ток представляет собой поток электрических зарядов, движущихся в одном направлении. Как следует из электромагнитной теории Максвелла, движущиеся электрические заряды порождают в окружающем их пространстве магнитное поле. Возникает, однако, вопрос, что такое заряд движущийся и неподвижный? Относительно чего следует измерять скорость движения заряда? Предположим, некоторое количество электрических зарядов движется вместе с Землей. Будет ли в этом случае движение зарядов сопровождаться возникновением магнитного поля? Решение этого вопроса предложил Герц. «Герц исходил из того, что эфир полностью увлекается телами... По Герцу, на электромагнитных явлениях не сказывается не только движение Земли по орбите, но и ее суточное вращение... Опыты Роуланда, Рентгена, Эйхенвальда, Вильсона... указывают на... слабое место теории Герца – молчаливо допускается полное увлечение... эфир должен двигаться с той же скоростью, что и тела, должен полностью увлекаться как внутри, так и вне тел» [2].
В 1876г., как об этом пишет Л.И.Мандельштам, «...Роуланд взял два позолоченных стеклянных диска, между которыми вращался оклеенный золотой фольгой эбонитовый диск (рис.1). Обкладки на диске заряжались, скажем, положительно, а обкладки на стекле заземлялись. Астатическая магнитная стрелка была подвешена над верхней стеклянной крышкой, и при вращении эбонитового диска наблюдалось отклонение этой стрелки...»
Рис. 1. Схема опыта Роуланда
«Несколько лет спустя (1888г.) Рентген провел другой опыт – с поляризованным диэлектриком. Между разноименно заряженными обкладками вращался диск из незаряженного изолятора (рис.2). Отклонение стрелок магнитометра показывало, что и в этом случае возникает ток... Рентген добивался высокой чувствительности устройства... Однако он не смог получить необходимой точности. Количественные результаты были достигнуты Эйхенвальдом в 1904г.» [1]. Как показали опыты Эйхенвальда с вращающимися дисками, величина тока, создающего магнитное поле, соответствует формуле Герца.
Согласно общепринятой точке зрения, «...внутренние стороны стеклянных дисков и обе стороны эбонитового диска... представляют собой обкладки конденсатора. В опытах Роуланда и Эйхенвальда один диск заряженного конденсатора двигался относительно другого, неподвижного диска, или заряды обоих дисков двигались относительно среды, находящейся между дисками. В опытах с вращающимся диэлектриком поверхностные заряды диэлектрика двигались относительно неподвижных зарядов на дисках конденсатора. При вращении дисков конденсатора вместе с помещенным между ними диэлектриком относительного перемещения зарядов не было, однако и в этом случае возникало магнитное поле». [3].
Предположим, что диски конденсатора вращаются вместе с помещенным между ними диэлектриком. В этом случае относительного перемещения зарядов нет – имеет место перемещение зарядов относительно среды между дисками. Величина тока соответствует формуле Герца. Средой между дисками в опытах Эйхенвальда является воздух, однако опыты Эйхенвальда нетрудно повторить в вакуумной камере. В этом случае средой между дисками окажется чистый вакуум или эфир. Тогда причиной возникновения магнитного поля следует считать движение зарядов относительно эфира, находящегося между дисками. Тот факт, что величина магнитного поля оказывается пропорциональной скорости вращения дисков, означает, что внешний по отношению к движущимся дискам эфир совершенно не увлекается их движением.
Предположим, далее, что вращается только диск из диэлектрика. Известно, что заряды на диэлектрике не могут перемещаться относительно его поверхности и при вращении диэлектрика будут вращаться вместе с ним с той же скоростью и в том же направлении, что и диэлектрик. Заряды на металлическом диске, в отличие от зарядов на диэлектрике, могут перемещаться относительно его поверхности. Будучи связаны с зарядами на диэлектрике общим для них электрическим полем, заряды на поверхности металлического диска будут вращаться в ту же сторону и с той же скоростью, что и заряды на поверхности диэлектрика. Относительного перемещения зарядов нет и в данном случае, имеет место перемещение зарядов относительно среды между дисками.
Предположим, наконец, что вращается только металлический диск. Так как диск из диэлектрика неподвижен, неподвижны и заряды на его поверхности. Заряды на поверхности металлического диска, связанные с зарядами на поверхности диэлектрика общим для них электрическим полем, также остаются неподвижными – нет не только относительного перемещения зарядов, но и движения зарядов относительно среды между дисками. Тем не менее, и в этом случае возникает магнитное поле, величина которого опять-таки соответствует формуле Герца. При вращении только диска из диэлектрика или одновременном вращении металлических дисков и диска из диэлектрика можно предположить, что причиной появления магнитного поля в этих случаях является вращение электрических зарядов относительно магнитной стрелки. Однако при неподвижном диске из диэлектрика нет не только относительного движения зарядов или их движения относительно среды между дисками, но и движения зарядов относительно магнитной стрелки. Что же является причиной возникновения магнитного поля в этом случае? Предположим, что эфир не только окружает тела, но и содержится внутри них. Тогда возникновение магнитного поля при неподвижном диэлектрике можно объяснить движением зарядов относительно эфира, заключенного внутри вращающегося металлического диска. Тот факт, что величина магнитного поля и в этом случае пропорциональна скорости вращения металлического диска, означает, что эфир внутри движущихся тел полностью увлекается их движением. Соответствие результатов опытов Эйхенвальда с вращающимися дисками формуле Герца означает, что теория Герца требует полного увлечения эфира внутри движущихся тел и полного его не увлечения вне движущихся тел.