XIX век - это век становления и быстрого развития еще одной важной области астрономии- астрофизики. К тому времени в сферу внимания ученых попали принципы устройства и эволюции небесных тел, физика процессов, происходящих в космическом пространстве. От физики новая наука взяла методы изучения, а от астрономии - необъятное поле исследований, о котором физики могли только мечтать.
Термин “астрофизика” появился в середине 60-х годов XIX века. “Крестным отцом” астрофизики был немецкий астроном Иоганн Карл Фридрих Целльнер (1834 – 1882), профессор Лейпцигского университета.
В отличие от небесной механики, год рождения, который точно известен (1687-й), назвать дату “появления на свет” астрофизики не так легко. Она зарождалась постепенно, в течение 1-ой половине XIX века.
В 1802 г. английский физик Уильям Хайд Волластон (1766-1828), открывший годом ранее ультрафиолетовые лучи, построил спектроскоп, в котором впереди стеклянной призмы параллельно ее ребру располагалось узкая щель. Наведя прибор на Солнце, он заметил, что солнечный спектр пересекают узкие темные линии.
Волластон тогда не понял смысл своего открытия и не придал ему особого значения. Через 12 лет, в1814 г. немецкий физик Йозеф Фраунгофер (1787-1826) вновь обнаружил в солнечном спектре темные линии, но в отличие от Волластона сумел правильно объяснить их поглощением лучей газами атмосферы Солнца используя явления дифракции света, он измерил длины волн наблюдаемых линий, которые получили с тех пор название фраунгоферовых.
В 1873 г. шотландский физик Дэвид Брюстер (1781-1868). Известный своими исследованиями поляризации света, обратил внимание на группу полос в солнечном спектре, интенсивность которых увеличивалась по мере того, как Солнце опускалось к горизонту. Прошло почти 30 лет, прежде чем в 1862 г. выдающийся французский астрофизик Пьер Жюль Сезар Жансен (1824-XIX07) дал им правильное объяснение: эти полосы, получившие название теллурических, вызваны поглощение солнечных лучей газами земной атмосферы.
К середине XIX века физики уже довольно хорошо изучили спектры светящихся газов. Так, было установлено, что свечение паров порождают яркую желтую линию. Однако на том же месте в спектре Солнца наблюдалась темная линия. Что бы это значило?
Решить этот вопрос в 1859 г. взялись выдающийся немецкий физик Густав Кирхгоф (1824-1887) и его коллега, известный химик Роберт Бунзен (1811-1899).Сравнивая длины волн фраунгоферовых линий в спектре Солнца и линий излучения паров различных веществ, Кирхгоф и Бунзен обнаружили на Солнце натрий, железо, магний, кальций, хром и другие металлы. Каждый раз светящимся лабораторным линиям земных газов соответствовали темные линии в спектре Солнца. В 1862году шведский физик и астроном Андрес Йонас Ангстрем (1814-1874), еще один из основоположников спектроскопии, обнаружил в солнечном спектре линии самого распространенного в природе элемента – водорода. В 1869году он же, измерив с большой точностью длины волн нескольких тысяч линий, составил первый подробный атлас спектра Солнца.
18 августа 1868гда французский астрофизик Пьер Жансен, наблюдая полное солнечное затмение, заметил яркую желтую линию в спектре Солнца вблизи двойной линии натрия. Ее приписали к неивестному на Земле химическому элементу гелию. Действительно, на Земле гелий был впнрвые найден в газах, выделявшихся при нагревании минерала клевеита, только в 1895году, за что он вполне оправдал свое “внеземное” название.
Успехи спектроскопии Солнца стимулировали ученых применять спектральный анализ к изучению звезд. Выдающаяся роль в развитии звездной спектроскопии по праву принадлежит итальянскому астрофизику Анджело Секки (1818-1878). В 1863-1868 годах он изучил спектры 4-х тысяч звезд и построил первую классификацию звездных спектров, разделив их на четыре класса. Его классификация была принята всеми астрономами и применялась до введения в начале XX века Гарвардской классификации. Одновременно с Уильямом Хеггинсом Секки выполнил первые спектральные наблюдения планет, причем он обнаружил в красной части спектра Юпитера широкую черную полосу, принадлежавшую, как выяснилось впоследствии, метану.
Немалый вклад в развитие астроспектроскопии внес соотечественник Секки Джованни Донати (1826-1873), имя которого обычно связывают с открытой им в 1858году и названной в его честь яркой и очень красивой кометой. Донати первым получил ее спектр и отождествил наблюдаемые в нем полосы и линии. Он изучал спектры Солнца, звезд, солнечных хромосферы и короны, а также полярных сияний.
Уильям Хеггинс (1824-1910) установил сходство спектров многих звезд со спектром Солнца. Он показал, что свет испускается его раскаленной поверхностю, поглощаясь после этого газами солнечной атмосферы. Стало ясно, почему линии элементов в спектре Солнца и звезд, как правило, темные, а не яркие. Хеггинс впервые получил и исследовал спектры газовых туманностей, состоящие из отдельных линий излучения. Это и доказало, что они газовые.
Хеггинс впервые изучил спектр новой звезды, а именно новой Северной Короны, вспыхнувшей в 1866году, и обнаружил существование вокруг звезды расширяющейся газовой оболочки. Одним из первых он использовал для определения скоростей звезд по лучу зрения принцип Доплера – Физо (его часто называют эффектом Доплера).
Незадолго до этого, в 1842году, австрийский физик Кристиан Доплер (1803-1853) теоретически доказал, что частота звуковых и световых колебаний, воспринимаемых наблюдателем, зависит от скорости приближения или удаления их источника. Высота тона гудка локомотива, например, резко меняется (в сторону понижения), когда приближающийся поезд проезжает мимо нас и начинает удаляться.
Выдающийся французский физик Арман Ипполит Луи Физо (1819-1896) в 1848г проверил это явление для лучей света в лаборатории. Он же предложил использовать его для определения скоростей звезд по лучу зрения, так называемых лучевых скоростей,- по смещению спектральных линий к фиолетовому концу спектра (в случае приближения источника) или к красному (в случае его удаления). В 1868году Хеггинс таким способом измерил лучевую скорость Сириуса. Оказалось, что он приближается к земле со скоростью примерно 8 км/с.
Последовательное применение принципа Доплера – Фозо в астрономии привело к ряду замечательных открытий. В 1889году директор Гарвардской обсерватории (США) Эдуард Чарлз Пикеринг (1846-1919) обнаружил раздвоение линий в спектре Мицара – всем известной звезды 2-й звездной величины в хвосте Большой Медведицы. Линии с определенным периодом то сдвигались, то раздвигались. Пикеринг понял, что это скорее всего тесная двойная система: ее звезды настолько близки друг к другу, что их нельзя различить ни в один телескоп. Однако спектральный анализ позволяет это сделать. Поскольку скорости обеих звезд пары направлены в разные стороны, их можно определить, используя принцип Доплера – Физо (а также, конечно, и период обращения звезд в системе).
В 1900году пулковский астроном Аристарх Аполлонович Белопольский (1854-1934) использовал этот принцип для определения скоростей и периодов вращения планет. Если поставить щель спектрографа вдоль экватора планеты, спектральные линии получат наклон (один край планеты к нам приближается, а другой – удаляется). Приложив этот метод к кольцам Сатурна, Белопольский доказал, что Участки кольца обращаются вокруг планеты по законам Кеплера, а значит, состоят из множества отдельных, не связанных между собой мелких частиц, как это предполагали, исходя из теоретических соображений, Джеймс Клерк Максвелл (1831-1879) и Софья Васильевна Ковалевская (1850-1891).
Одновременно с Белопольским такой же результат получили американский астроном Джеймс Эдуард Килер (1857-1900) и французский астроном Анри Деландр (1853-1948).
Примерно за год до этих исследований Белопольский обнаружил периодическое изменение лучевых скоростей у цефеид. Тогда же московский физик Николай Алексеевич Умов (1846-1915) высказывал опередившую свое время мысль, что в данном случае ученые имеют дело не с двойной ситемой,как тогда полагали, а с пульсацией звезды.
Между тем астроспектроскопия делала все новые и новые успехи. В 1890году Гарвардская астрономическая обсерватория выпустила большой каталог звездных спектров, содержавший 10350 звезд до 8-й звездной величины и до 25* южного склонения. Он был посвящен памяти Генри Дрэпера (1837-1882), американского любителя астрономии (по специальности врача), пионера широкого применения фотографии в астрономии. В 1872году он получил первую фотографию спектра звезды (спектрограмму), а в дальнейшем – спектры ярких звезд, Луны, планет, комет и туманностей. После выхода первого тома каталога к нему не раз издавались дополнения. Общее число изученных спектров звезд достигло 350 тысяч.
Применение фотографии в астрономии имело громадное значение благодаря её многочисленным преимуществам перед визуальными наблюдениями.
В 1839 г. французский изобретатель Луи Жак Манде Дагер (1787-1851) придумал способ получения скрытого изображения на металлической пластинке из йодистого серебра, которое он проявлял затем парами ртути. Появились первые портреты людей (дагеротипы). Директор Парижской обсерватории Доминик Франсуа Араго (1786-1853) в своем докладе Французской академии наук 19 августа 1839г. указал на обширные перспективы применения фотографии в науке, в частности в астрономии. Уже в 1840 г. были получины первые дагеротипы Солнца и Луны, затем звезд, солнечной короны, спектра Солнца.
Большим недостатком дагеротипов была невозможность их тиражирования. Дагеротипполучался в одном экземпляре, и, чтобы получить другой, надо было снимать вторично. В 1851г. англичанин Ф. Скотт-Арчер придумал мокрый коллоидный способ, когда пластинки незадолго до употребления заливались слоем коллоида, содержащим йодистое серебро. Последнее и служило светочувствительным материалом.
Первые же эксперименты по фотографированию небесных тел этим способом показали значительное преимущество мокрого коллкидного способа перед дагеротипным. Время экспозиций сократились более чем в 100 раз, изображения содержали многочисленные детали.