Смекни!
smekni.com

Дискретность электромагнитных волн (стр. 3 из 4)

«... элементарный заряд играет роль кванта, ...»

Фундаментальный курс физики. А.Д.Суханов. 1999. Т.3. С.7.

Электрическое поле представляет поток электрического смещения, измеряемый в кулонах. Элементарный заряд играет роль кванта электрического поля. Т.е. дискретность электрических потоков - это один из важнейших законов электродинамики, который необходимо учитывать при рассмотрении полевых процессов. Закон можно сформулировать так: не существует электрических полей (потоков), у которых величина электрического потока меньше, чем квант заряда, независимо от того, потенциальное поле или вихревое. Таким образом, природу дискретности электрических зарядов можно объяснить дискретностью электрических потоков.

Электрические поля (потоки) - это один из видов материи и они могут существовать как совместно с частицами, представляя заряды, так и самостоятельно, независимо от частиц, в виде вихревых полей - вихревых потоков электрической индукции. Вихревые электрические потоки (поля) измеряются в кулонах и представляют количество электричества, которое не связано с частицами вещества.

«Электрическое поле может быть как потенциальным, так и вихревым, ...»

Курс физики. Т.И.Трофимова. 1998. С.251.

Надо заметить, что в пространстве средняя плотность потенциальных электрических потоков во много раз меньше, чем вихревых, например, электромагнитные волны - это вихревые поля (потоки). Получается, электрические поля (потоки), в основном, - это самостоятельно существующие материальные образования и только в относительно редких случаях они находятся вместе с частицами, представляя электрические заряды.

«Вселенная еще заполнена и квантами света - фотонами, число которых около 500 в каждом кубическом сантиметре Вселенной, в миллиарды раз больше, чем протонов. Мир заполнен светом!»

Наука и жизнь. 2000. 2. С.26.

«... свет есть частный случай электромагнитных волн. От всех остальных электромагнитных волн свет отличается только количественно - длиной волны.»

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2. С.18.

Таким образом, электрические поля и частицы могут быть как вместе, так и по отдельности. При этом не может быть электрического заряда без электрического потока. Электрический же поток может существовать без заряда. Т.е. электрический заряд представляет электрическое поле, связанное с частицей, такое поле (поток) называется электростатическим (потенциальным). Свободные электрические поля (потоки), не связанные с частицами, называют вихревыми (непотенциальными).

«Вихревое электрическое поле отличается от электростатического поля тем, что оно не связано с электрическими зарядами, ...»

Физика. О.Ф.Кабардин. 1991. С.189.

Точнее, вихревые электрические потоки отличаются от электростатических потоков тем, что они не связаны с частицами вещества, так как электрические заряды - это электрические потоки, связанные с частицами. Зарядов без частиц не бывает, так как это уже будут свободные электрические потоки, которые не называются зарядами. Можно сказать, что заряды в свободном состоянии представляют вихревые электрические потоки, которые также измеряются в кулонах. Так как потенциальные электрические потоки отличаются от вихревых тем, что они всегда связаны с частицами, то их свойства, соответственно, также имеют определенные отличия, поэтому электрические потоки, связанные с частицами, называют зарядами, хотя можно обойтись и без термина "заряд", заменив его термином "поток". Например, с точки зрения электродинамики выражение "частица имеет электрический заряд" означает то же самое, что "частица имеет электрический поток" - все измеряется в кулонах. Таким образом, электрический заряд частицы - это поток количества электричества, где знаками (+) и (-) указывается направление потока относительно частицы. Аналогично, полюса магнита - также всего лишь указатели направления полевого потока. По сути магнитные полюса, вместо исторически сложившегося названия "северный" и "южный", можно называть "положительный" и "отрицательный" в зависимости от направления потока. Магнитные поля (потоки), так же как и электрические, могут быть либо связаны с вещественной материей, либо свободны от нее.

К сожалению, иногда еще приходится сталкиваться с идеалистическими предрассудками, когда электрические поля (потоки) обязательно связывают с заряженными частицами, т.е. как бы забывают про теорию близкодействия и материальность полей. Также до сих пор еще встречается заблуждение, что только электрические потоки, связанные с частицами, являются дискретными, а свободные от частиц электрические поля, представляющие вихревые потоки количества электричества, дискретности не имеют. Т.е. как бы забывают про современные квантовые представления, согласно которым все поля имеют квантовую природу. Квантовыми свойствами обладает любая форма материи - как вещественная, так и полевая.

Вихревое электрическое поле обладает энергией (массой), так же как и потенциальное электрическое поле, даже если оно чисто вихревое. Электрические поля, как статические (потенциальные), так и вихревые (непотенциальные), представляют потоки электрического смещения поля, измеряемые в кулонах и обладающие энергией. Электрический ток и электромагнитные волны - это движущиеся потоки электрического смещения поля. Например, движение зарядов - это движение электрических потоков, также излучение электромагнитных волн - это излучение электрических потоков. Движущиеся электрические потоки проявляются как магнитные потоки - релятивистский эффект (эффект движения) B = m0[vD], где m0 - магнитная постоянная, v - скорость, т.е. движущийся электрический поток для покоящегося наблюдателя представляет магнитный поток, поэтому магнитные потоки также являются квантовыми (дискретными), как и электрические. Согласно квантовым представлениям, все поля (полевые потоки) - квантовые. Квантом электрического поля является квант электрического потока (заряда), квантом магнитного поля является квант магнитного потока, соответственно, квантом электромагнитного поля излучения является квант электромагнитного потока. Электромагнитная волна состоит из индукционно связанных потоков - электрического и магнитного, что представляет электромагнитный поток (электромагнитное возмущение), его размерность Кл·Вб. Величина кванта электромагнитного потока:

h = 2eФ0= 6.626·10-34 Кл·Вб,

где e - квант электрического потока (заряда) 1.602·10-19 Кл, Ф0 - квант магнитного потока 2.068·10-15 Вб. Энергия электромагнитного кванта:

W = 2eФ0v,

где v - частота, или:

W = 2eФ0/T,

где T - период кванта электромагнитного возмущения, т.е., чем больше плотность кванта (меньше период), тем больше его энергия. Объемная плотность энергии электромагнитного потока в вакууме w = cDB (w = EH/c), где D - плотность потока электрической индукции Кл/м2, B - плотность потока магнитной индукции Вб/м2 (сокращенно - электрическая и магнитная индукция или плотность электрического и магнитного потоков), c - скорость света. Т.е. объемная плотность энергии электромагнитного потока равна произведению плотности электрического потока на плотность магнитного потока и на скорость их распространения. Таким образом, чем меньше длина волны (меньше период), тем больше энергия кванта электромагнитного потока (фотона), так как увеличивается плотность потоков индукции. Например, длина волны уменьшилась в два раза, соответственно, плотность электрического и магнитного потоков возросла в четыре раза, следовательно, плотность энергии электромагнитного потока (w = cDB) возросла в шестнадцать раз, но эффективный объем электромагнитного возмущения уменьшился в восемь раз, отсюда - энергия кванта электромагнитного потока возросла в два раза, т.е. энергия растет обратно пропорционально длине волны, что соответствует экспериментальным данным.

«... плотность энергии электромагнитного поля складывается из плотностей энергии электрического и магнитного полей.»

Физика. В.Ф.Дмитриева. 2001. С.258.

Световые кванты - это движущиеся электрические и магнитные потоки.

«... в бегущей плоской электромагнитной волне электрическая энергия в любой момент равна магнитной.»

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2. С.18.

Например, в дискретной электромагнитной волне - фотоне энергия электрического потока равна энергии магнитного потока:

Wэ = Wм = eФ0v,

т.е. электромагнитная энергия фотона:

W = Wэ + Wм = 2eФ0v.

Если E = hv - это формула "энергии фотона", то W = 2eФ0v - это формула "электромагнитной энергии фотона", так как в ней, вместо коэффициента пропорциональности постоянной Планка, используются электромагнитные постоянные. Если в формулах для фотона не использовать коэффициент пропорциональности (как исторически сложилось), то они принимают нормальный электродинамический вид.

« [D] = Кл/м2 , [B] = Вб/м2 »

Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2. С.29.

D - это плотность электрического потока, B - плотность магнитного потока, соответственно, [DB] - плотность электромагнитного потока, его размерность Кл·Вб/м4 или кг/м2·с, что представляет плотность потока электромагнитной массы [DB] = mv, где m - плотность электромагнитной массы, v - скорость. Для сравнения: вектор Пойнтинга S = [EH] = wv представляет плотность потока электромагнитной энергии, где w - плотность электромагнитной энергии. Зная, что mv = DB = e0m0EH, mv/e0m0 = EH, mv/e0m0 = wv и c2 = 1/e0m0, можно найти соотношение между плотностью электромагнитной массы и энергией m = e0m0w, w = mc2. В среде электродинамическое соотношение между энергией и массой имеет вид m = ee0mm0w = w/v2 и w = mc2/em = mv2, где e - диэлектрическая проницаемость среды, m - магнитная проницаемость среды, v - скорость распространения света в среде. Соответственно, импульс электромагнитной волны p = ee0mm0Wv = W/v, где W - электромагнитная энергия волны. Таким образом, соотношение W = Mc2 представляет лишь частный случай для вакуума. Т.е. соотношение между энергией и массой зависит от свойств среды, а формула W = Mc2 - всего лишь частный случай электродинамического соотношения M = ee0mm0W (формула электромагнитной массы), где масса, имея полевое происхождение, зависит от электромагнитной проницаемости среды. Согласно электродинамике, скорость света v = (ee0mm0)-1/2 - это показатель электромагнитной проницаемости среды. Также надо заметить, что импульс электромагнитного кванта не p = W/c, как написано в некоторых учебниках, а p = ee0mm0Wv = W/v, т.е., как и у всех электромагнитных волн, он зависит от электромагнитной проницаемости среды. Длина волны электромагнитного кванта l = h/ee0mm0Wv = hv/W. Электромагнитная масса фотона M = ee0mm02eФ0v, т.е., как и все электромагнитные волны, фотоны обладают электромагнитной массой. В электромагнитной волне масса электрического потока равна массе магнитного потока, соответственно, в фотоне Mэ = Mм = ee0mm00v