Различные интерпретации электромагнитного поля
В некоторых полевых интерпретациях не делается различие между "электромагнитным полем" и "электромагнитным полем излучения" ("волновым электромагнитным полем"), что создает путаницу в терминологии.
«В квантовой физике электромагнитное поле интерпретируется как "газ" элементарных частиц - фотонов, ...»
Физическая энциклопедия. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ.
«Квантом этого поля является фотон ...»
Физический энциклопедический словарь. КВАНТОВАЯ ЭЛЕКТРОДИНАМИКА.
«При больших частотах электромагнитного поля становятся существенными его квантовые (дискретные) свойства, и электромагнитное поле можно рассматривать как поток квантов поля - фотонов.»
Физический энциклопедический словарь. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ.
Так как поток квантов электромагнитного поля (фотонов) - это поле электромагнитных волн с дискретными свойствами (фотон - квант света), в данной интерпретации возникают проблемы с терминологией, например, "возмущение электромагнитного поля" означает "возмущение электромагнитных волн", т.е. модуляцию волн. Данная интерпретация неприменима для рассмотрения процессов, протекающих в дискретных электромагнитных волнах - фотонах, так как само поле интерпретируется как состоящее из фотонов. "Электромагнитное поле" и "электромагнитное поле излучения" - это разные понятия, так как электромагнитное поле излучения - это электромагнитный поток (поле распространяющихся электромагнитных волн - волновое электромагнитное поле).
«... поля излучения (поля электромагнитных волн).»
Физическая энциклопедия. ИЗЛУЧЕНИЕ.
«Поля такого рода называются электромагнитными волнами.»
Электромагнетизм. И.Е.Иродов. 2000. С.294.
«Поле электромагнитных волн называется полем излучения.»
Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996. С.349.
Электромагнитные поля излучения - это векторные поля, состоящие из электрических и магнитных потоков. Квантом таких полей является электромагнитный квант - фотон, который состоит из кванта электрического потока и кванта магнитного потока.
«Такое поле называется электромагнитным полем излучения. Это понятие охватывает радиоволны, световые волны, рентгеновские и гамма-лучи.»
Фундаментальный курс физики. А.Д.Суханов. 1998. Т.2. С.393.
Электромагнитные поля (потоки) излучения представляют распространяющиеся вихревые поля (токи электрического смещения) в виде электромагнитных волн - волновых колебаний (возмущений) электромагнитного поля.
«Электромагнитными волнами называются возмущения электромагнитного поля, распространяющиеся в пространстве.»
Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996. С.343.
«Колебания вещества порождают упругую волну, а колебания электромагнитного поля - электромагнитную волну.»
Основы физики. Б.М.Яворский, А.А.Пинский. 2000. Т.2. С.62.
«Это пространство с действующими в нем силами называется электромагнитным полем.»
Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.1. С.8.
«... электромагнитное поле может быть представлено как совокупность бесконечно большого числа гармонических осцилляторов.»
ОТФ. Квантовая механика. И.В.Савельев. 1996. Т.2. С.343.
Поле осцилляторов - это скалярное поле, а возникающая в нем напряженность представляет векторное поле в виде потока напряженности, так как напряженность имеет направление. Т.е. в скалярном электромагнитном поле осцилляторов могут распространяться возмущения, представляющие напряженность поля, где электрические и магнитные потоки напряженности - это векторные поля. В такой интерпретации электромагнитное поле представляет совокупность двух полей - электрического и магнитного (поле электромагнитных осцилляторов), при этом электродинамика рассматривает магнитное поле как релятивистский эффект, связанный с запаздыванием распространения электрического поля (электрического смещения поля), т.е. магнитное поле - это одна из форм проявления электрического поля, возникающая как чисто релятивистский эффект. Поэтому в данной интерпретации свойства электромагнитного поля можно рассматривать как различные формы проявления электрического поля (поля электрических осцилляторов). Например, электромагнитные волны - это распространяющиеся возмущения электрического поля (вихревые электрические поля, токи электрического смещения), где магнитное поле можно рассматривать как чисто релятивистский эффект. Таким образом, с точки зрения логики, вместо термина "электромагнитное поле" больше подходит термин "электрическое поле" ("электродинамическое поле"), так как установлено, что не существует магнитных зарядов, а магнитное поле представляет эволюцию электрического поля.
«В результате магнитное поле можно рассматривать как неизбежный релятивистский результат движения электрических зарядов ... магнитное поле выступает как вспомогательное, характеризующее историю эволюции основного электрического поля.»
Физическая энциклопедия. ЭЛЕКТРОДИНАМИКА.
Движение зарядов всегда связано с движением электрических потоков, поэтому более точно магнитное поле можно рассматривать как неизбежный релятивистский результат движения электрических потоков, так как магнитная индукция может возникать и без движения электрических зарядов, т.е. там, где в пространстве движутся (распространяются) электрические потоки, всегда есть магнитное поле - магнитные потоки: B = m0[vD].
«... магнитное поле возбуждается не только токами проводимости, ...»
Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2. С.7.
« B = -[vE]/c2 »
Электромагнетизм. И.Е.Иродов. 2000. С.227.
Если в формуле преобразования полей заменить напряженность на индукцию (в вакууме m0D = E/c2), то получим B = m0[vD] (H = [vD]), где D - плотность электрического потока (электрическая индукция), v - скорость движения электрического потока, B - плотность магнитного потока (магнитная индукция), возникающего как релятивистский эффект, m0 - магнитная постоянная. При этом возникающая магнитная индукция всегда поперечна движению. Для наглядности сформулирую правило возникновения магнитной индукции: если ладонь левой руки расположить так, чтобы четыре пальца указывали направление движения электрического потока, а вектор D входил в ладонь, тогда отставленный большой палец укажет направление вектора B. В некоторых случаях только с помощью этого правила удается определить направление линии магнитной индукции. Остается надеяться, что когда-нибудь это правило появится в учебниках, и там, наконец, исправят некоторые рисунки, где неправильно изображено направление линий магнитной индукции, например, между обкладками конденсатора, через который течет электрический ток смещения. Данное правило действует всегда, т.е. как для прямолинейного, так и для кругового движения. Например, между обкладками заряженного конденсатора существует электрический поток, при движении конденсатора для покоящегося наблюдателя движущийся электрический поток представляет магнитный поток, т.е., зная плотность электрического потока между обкладками движущегося конденсатора, можно вычислить плотность магнитного потока, возникающего как релятивистский эффект. Надо заметить, что если движутся два встречных разноименных электрических потока, то из-за суперпозиции полей может наблюдаться только магнитная индукция - без электрической, в этом случае движущиеся встречные электрические потоки представляют электрически нейтральный ток смещения (любое движение электрических потоков всегда связано с током электрического смещения, поэтому магнитное поле можно представить в виде токов смещения). Например, ток проводимости, представляя направленное движение электронов, создает в окружающем пространстве направленное движение отрицательных электрических потоков, связанных с зарядами электронов, и тем самым образуется магнитное поле. При этом покоящиеся положительные потоки, связанные с положительно заряженными частицами, нейтрализуют электрическую напряженность поля (суперпозиция полей), таким образом, в окружающем пространстве наблюдается только магнитное поле.
«Если по проводнику протекает ток, то вокруг него возникает магнитное поле, так сказать, в "чистом виде", без электрической составляющей.»
Основы физики. Б.М.Яворский, А.А.Пинский. 2000. Т.1. С.481.
«Любой заряд независимо от наличия других зарядов всегда имеет электрическое поле.»
Физика. В.Ф.Дмитриева. 2001. С.120.
Т.е., если заряд движется, то независимо от других зарядов вместе с ним движется его электрический поток (поле).
Согласно теории близкодействия, с электрическими зарядами всегда связаны материальные электрические потоки, движение которых и создает магнитное поле. Таким образом, для возникновения магнитного поля необязательно должно быть движение зарядов, достаточно движения электрических потоков.
К сожалению, в учебной литературе некоторые электродинамические процессы рассматриваются непоследовательно, т.е. не придерживаясь причинно-следственной связи. Например, рассматривая движение зарядов, сразу переходят к магнитному полю, при этом совершенно не упоминается о связанных с зарядами движущихся электрических потоках и токах смещения, которые и образуют само магнитное поле (согласно электродинамике, с каждым движущимся электрическим зарядом движется связанный с ним электрический поток). Таким образом, у изучающего электродинамику складывается идеалистическое представление, что магнитное поле возникает из ничего, так как не упоминается, что магнитный поток - это движущийся электрический поток. Зная плотность связанного с зарядом движущегося электрического потока D = qr/4pr3, всегда можно, согласно B = m0[vD], вычислить плотность магнитного потока вокруг заряда B = m0q[vr]/4pr3.