Смекни!
smekni.com

Волны, фотоны, кванты (стр. 2 из 2)

Отношение к этой проблеме сильно зависит от того, какой смысл вкладывается в понятия “волна” и “частица”. Например, если называть волной любой объект, описываемый гармонической функцией типа (16_3), а частицей - соответственно объект, описываемый дельта-функцией, то всякий объект природы, допускающий описание при помощи математических функций может рассматриваться либо как совокупность волн, либо -частиц в зависимости от желания. Поскольку помимо указанных существует множество других ортогональных наборы функций, с точки зрения математики последовательный подход требует признания не двойственности, а бесконечной множественности природы как микроскопических, так и макроскопических объектов.

Традиционная же для физике проблема состоит в попытке разрешить дилемму о том, идентично ли поведение света потоку подчиняющихся механике Ньютона “небольших шариков” - корпускул или оно подобно поведению волн на поверхности воды или звуковых колебаний в воздухе. При этом вопросы о том, почему свет обязан быть похожим на привычные нам объекты макромира и почему привычные для нас законы поведения классических частиц и волн не требуют объяснения не задаются.

Что же касается возможности опыта, в котором одновременно проявлялись бы и волновые и корпускулярные свойства света, то для его осуществления достаточно в классическом опыте Юнга уменьшить интенсивность источника света (например, до уровня излучения одного фотона в минуту), а для регистрации интерференционной картины использовать пластинку с фотоэмульсией (химическим соединением, зерна которого разрушаются при воздействии света). При такой постановке опыта видно, что каждый фотон на пластинке оставляет зачерненную точку, то есть подобно частице локализован в пространстве. Однако положение засвеченных точек на фотопластинке совершенно не соответствует классическим представлениям о поведении ньютоновских частиц: по мере накопления их количества на пластинке появляется характерная для классических волн интерференционная картина.

Принципиальное отличие в поведении фотонов от классических частиц состоит в том, что при наличии интерференции света (оба отверстия в промежуточном экране открыты) наблюдаемая на фотопластинке картина не является суммой картин, возникающих при поочередном открывании отверстий (рис. 19_3). Т.о. утверждение о том, что при наличии интерференции каждый из фотонов пролетает либо через отверстие |1>, либо через отверстие |2> промежуточного экрана не является верным, поскольку принципиально невозможно зарегистрировать прохождение фотона через одну из щелей, не поглотив его. Поглощение же фотона у одной из щелей промежуточного экрана просто означает ее закрытие, что неминуемо приводит к исчезновению интерференционной картины.

По современным представлениям на вопрос о том, в какую точку фотопластинки |x> попадет излученный источником фотон, теория в принципе не может дать ответа, позволяя лишь рассчитывать только вероятность попадания частицы в рассматриваемую точку. Эта вероятность оказывается пропорциональной классическому значению интенсивности света (квадрату модуля электрического поля), вычисляемому обычными методами решения задач интерференции:

(8)

.

Энергия, переносимая интерферирующими световыми пучками равна произведению энергии одного фотона (3) и числа фотонов, попадающих в рассматриваемую точку (разумеется пропорционального вероятности P(x) ). Таким образом снимается “противоречие” между классическим и планковским выражениями для энергии электромагнитного поля.

Значение фотонной модели. Предложенная А.Эйнштейном модель фотонов (“частиц, летящих без траекторий”) завоевала большую популярность из-за своей наглядности и до сих пор широко используется при решении задач квантовой механики. Введенное для объяснения взаимодействия удаленных друг от друга зарядов электромагнитное поле наконец получило “почти зримый образ” совокупности частиц. Наглядность этого “образа” весьма обманчива: свойства фотонов существенно отличаются от привычных свойств частиц, что иногда приводит к недоразумениям даже у специалистов. Более того, может быть поставлена под сомнение целесообразность самой концепции фотонов, поскольку эти “частицы” могут быть зарегистрированы лишь как акт взаимодействия излучения с веществом, в все моменты между излучением и поглощением фотон принципиально не наблюдаем.