Одно из возможных уточнений таково [46]: для функции
введем понятие "
Очевидно,
стремится к 1 при.
Естественное обобщение рассматриваемой задачи позволяет построить общую теорию оптимизационного подхода в статистике. Как известно [47], большинство задач прикладной статистики может быть представлено в качестве оптимизационных. Как себя ведут решения экстремальных задач? Частные случаи этой постановки: как ведут себя при росте объема выборки оценки максимального правдоподобия, минимального контраста (в том числе робастные в смысле Тьюки-Хьюбера [1, 48-50]), оценки нагрузок в факторном анализе и методе главных компонент при отсутствии нормальности, оценки метода наименьших модулей в регрессии [51] и т. д.
Обычно легко устанавливается, что для некоторых пространств
для любого
т. е. решения экстремальных задач также сходятся. Понятие сходимости в соотношении (8) уточняется с помощью
Как оценить распределение случайного элемента в пространстве общей природы? Поскольку понятие функции распределения неприменимо, естественно использовать непараметрические оценки плотности, т. е. функции.
где.
где
С помощью непараметрических оценок плотности можно развивать регрессионный анализ, дискриминантный анализ и другие направления в пространствах общей природы ([1-5], [59]).
Для проверки гипотез согласия, однородности, независимости в пространствах общей природы могут быть использованы статистики интегрального типа
где
Условия, при которых это справедливо, даны в работе [60]. (Хотя они сформулированы для конечномерного случая, переход в пространства общей природы не представляет принципиальных трудностей.) Пример применения - вывод предельного распределения статистики типа омега-квадрат для проверки симметрии распределения [61] (см. также [1, гл. 2]).
Перейдем к статистике конкретных видов объектов нечисловой природы.
2. 5. 4. Теория измерений
Цель теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в метрах, микронах, милях, парсеках и других единицах измерения. Выбор единиц измерения зависит от исследователя, т. е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую именно единицу измерения предпочтет исследователь, т. е. когда они инвариантны относительно допустимого преобразования шкалы.
Теория измерений известна в СССР уже около 30 лет по переводам [62, 63]. С семидесятых годов активно работают отечественные исследователи (см. обзор в [1, гл. 3]). В настоящее время изложение основ теории измерений включают в справочные издания [47], помещают в научно-популярные журналы [64] и книги для детей [65]. Однако она еще не стала общеизвестной среди специалистов, в частности, среди метрологов. Поэтому опишем одну из задач теории измерений.
Согласно [1, 62, 63], шкала задается группой допустимых преобразований (прямой в себя). Номинальная шкала (шкала наименований) задается группой всех взаимнооднозначных преобразований, шкала порядка - группой всех строго возрастающих преобразований. Это - шкалы качественных признаков [27]. Группа линейных возрастающих преобразований
Рассмотрим задачу сравнения средних значений для двух совокупностей одинакового объема