Смекни!
smekni.com

Классическая физика: самоорганизующиеся системы и микромир (стр. 4 из 14)

В сложных колебательных системах, точнее, в системах с большим числом степеней свободы колебаний, возможны явления, приводящие систему к неизлучающему состоянию или к состоянию, при котором излучения из нее в некотором смысле минимальны. Рассмотрим это.

Макроскопическое тело, состоящее из множества атомов, есть сложнейшая колебательная система, которая содержит в себе множество элементов (электронов и атомных ядер, атомов в целом), несущих заряды и диполи, способных вращаться, колебаться, прецессировать и резонировать различным образом, излучая при этом электромагнитные волны. Различные сочетания и варианты всех этих потенциально возможных в системе элементарных (локальных) колебаний составят гигантское разнообразие объемных излучающих колебательных процессов. Внутренних потерь энергии в этой системе нет.

Представьте себе колебательную систему бесконечной сложности, т.е. способную содержать в своем объеме бесконечное разнообразие электромагнитных колебательных процессов (систему с бесконечным разнообразием резонансов или бесконечным числом степеней свободы колебаний на каждой частоте), в которой возможен любой колебательный процесс, о каком бы мы ни заявили, создающий любое излучение. Имеется в виду, что эти процессы не уже идут в системе, а могут быть возбуждены в ней и тогда будут продолжаться в виде свободных колебаний, пока не излучится их энергия. Из такой системы будут вообще невозможны длительные периодические излучения. И вот почему.

Если в бесконечно сложной колебательной системе без внутренних потерь энергии будет действовать какой-либо излучающий колебательный процесс, и энергия его излучений станет уходить в пространство, то в ней разовьется и другой процесс, отличный от первого, но излучающий равно с ним и в противоположной фазе, и будет гасить излучение первого. Этот второй процесс, едва зародившись и будучи как угодно малым, будет тоже излучать в пространство поле, подобное первому, но противофазное к нему, уже отчасти гася излучение первого и уменьшая мощность уходящего из системы излучения. Уменьшение уходящей мощности говорит о том, что второй процесс поглощает энергию излучений первого. Как и все колебательные процессы, он накапливает эту энергию в себе и потому усиливается. При этом два процесса обмениваются энергией через свои излучения, причем второй, слабый процесс получает энергии больше, чем отдает, он развивается до тех пор, когда излучения двух процессов сравняются, а суммарное излучение их станет нулевым. Два процесса, излучая и принимая друг от друга энергию, составят один неизлучающий процесс. Когда внутренних потерь энергии нет, такие процессы могут длиться бесконечно. Так и объясняется с точки зрения классической физики сохранение энергии движений в системах микромира.

Любое электромагнитное излучение в пространство - это векторное поле, и мощность его может быть уменьшена путем наложения на него в пространстве другого поля - с противоположным направлением векторов (так и только так происходит отбор энергии из потока излучений, иначе нарушался бы закон сохранения энергии). Тогда поток энергии будет отчасти повернут, направлен к источнику этого другого излучения, для которого станет источником энергии. Если второй источник излучения - процесс свободных колебаний, резонанс, то он, принимая энергию излучений, накапливает ее в себе в виде энергии этих же колебаний и усиливается, как бы пытаясь перехватить весь поток уходящей энергии. И это придает излучающим колебательным системам тенденцию к минимуму излучения. Если в системе окажется возможным еще один процесс, способный еще уменьшить излучение из нее, то и этот процесс будет развиваться за счет перехватываемой им из пространства энергии излучения. Так будет продолжаться или до полного погашения излучений, или до исчерпания возможностей системы (степеней свободы колебаний). Процессы складываются в один сложный процесс, не излучающий вовсе или излучающий в некотором смысле минимально. Все это происходит самопроизвольно, поэтому будем понимать это как явление самоорганизации колебательно-волновых процессов в сложных излучающих колебательных системах.

Сложность реальных макроскопических тел как колебательных систем не бесконечна, в них возможен не любой процесс, поэтому в них действуют, не затухая, лишь те процессы, которым там нашлись "антиподы" - равно и противофазно излучающие процессы. Прочие же процессы излучают свою энергию и затухают. Естественно, в системах конечной сложности спектр оставшихся процессов "дырявый" - дискретный, и чем проще система, тем меньше в ней число неизлучающих процессов, а дискретность более заметна.

В частном случае, в описанных выше системах, построенных из генераторов, тенденция к минимальному излучению колебательной энергии порождается самим принципом автогенерации, т.е. самовоспроизводства колебаний. Каждый генератор воспроизводит те колебания, которые содержатся в его колебательном контуре, независимо от их фазы. А вот количество излучаемой энергии зависит от сочетания фаз колебаний в генераторах. Ведь всё множество излучающих генераторов представляет собой некое подобие решетчатой антенны, излучение энергии из которой зависит от фазировки излучателей. Различные сочетания фаз, т.е. различные формы (или, как называют физики, "моды") колебаний и полей затухают здесь различно, а воспроизводятся в равной степени, их энергия в равной степени теряется в схемах генераторов, но в различной степени излучается. Воспроизводятся лишь те колебания, которые остались в колебательных системах, но не те, что "улетели". Поэтому, каким бы ни было начало колебаний, в итоге будет преобладать та "мода", которая излучает меньше прочих. Приток энергии в систему и амплитуды колебаний всегда чем-нибудь ограничены, поэтому в системе "выживает" лишь "мода", излучающая минимально. Она и становится устойчивой формой колебаний в этой системе.

Подобное явление имеет место во множестве сложных автоколебательных систем, и более известно в теории лазеров под названием "конкуренция мод", где оно математически описано и изучено, тенденция к минимальному излучению установлена. Систему из очень большого числа генераторов тоже можно рассматривать как некую активную (с отрицательным затуханием волн) среду, подобную активной среде лазера, которая тоже состоит из множества осцилляторов, тоже вырабатывает колебания и излучения. Мы можем просто перенести на наш случай те же сделанные для лазеров математические описания и выводы.

В больших системах таких минимумов и устойчивых форм колебаний может быть множество, и возможны переходы от одной устойчивой формы к другой.

Рассмотрим простейший пример неизлучающей системы. Пусть два таких же генератора - источника излучений установлены параллельно друг другу в очень длинную сверхпроводящую трубу с открытыми концами, и расстояние между ними равно n+1/2 длины волн, излучаемых ими в трубу. Когда излучения источников синфазны и равны, то приходят к концам трубы с разностью хода в одну полуволну, то есть в противофазе, и в сумме равными нулю. Значит, энергия таких колебаний не вылетает из трубы, а остается в системе. Она циркулирует от одного излучателя к другому, и каждый из них, излучая, принимает энергию излучений от другого. Это неизлучающая пара излучающих процессов. Если бы в этой системе не было потерь энергии, то энергия синфазных колебаний сохранялась бы бесконечно долго, приток энергии и усилители стали бы ненужными, и было бы достаточно пассивных колебательных контуров или других резонаторов. Резонаторы, возбужденные произвольным образом, бесконечно сохраняли бы лишь синфазные колебания, излучив энергию прочих.

Без трубы, в свободном пространстве излучения уходят во все стороны, в большой системе все несколько сложнее, но, в принципе, происходит так же. В ней остаются только те формы колебаний, которые при равных условиях нуждаются в меньшем притоке энергии от генераторов или вовсе в нем не нуждаются.

Энергия, питающая такую систему, может поступать в нее не только через усилители, но и непосредственно - в виде энергии механической или электромагнитной, и, если нет внутренних потерь энергии, сохраняться в ней. Особенность упругой системы в том, что каждый ее элемент находится в устойчивом положении, поэтому любое внешнее воздействие на систему, будь оно механическим или электромагнитным, выводит элементы из устойчивых положений, действуя против сил, создающих устойчивые положения, и потомупередает свою энергию полям, образующим эти силы. При этом пополняется энергия именно тех колебаний и полей, которые создают целостность системы. Это тоже процесс автогенерации колебаний, при котором сохраняется та же тенденция к удержанию энергии в системе. Какими бы хаотичными ни были внешние силы, их энергия преобразуется в упорядоченную форму, становится частью внутренней энергии системы и сохраняется в ней. Это можно назвать самоорганизацией энергии. С другой стороны - это обычное для электромеханических устройств и систем преобразование энергии из одной формы в другую.

Повторим: воспроизводятся и сохраняются здесь именно те формы полей и колебаний, которые создают целостность и при этом достаточно слабо излучаются.

Можно теперь представлять себе упругую самоорганизующуюся систему, состоящую только из резонаторов. Такие системы при отсутствии в них внутренних потерь энергии и достаточно малом излучении способны существовать в энергетическом равновесии с окружающей средой, на фоне излучений других таких же систем, когда приток энергии из среды компенсирует энергию излучений из системы.