В соответствии с этим, модель ядра - это просто очень плотная электромагнитная масса. Например, капли и шарики из диэлектрика, абсолютно прозрачного для всех электромагнитных волн. Но нужно, чтобы скорость волн в этом материале была на много порядков меньше, чем в пустоте. Будто материал сжат вместе с волнами до плотности реального ядра, т.е. на много порядков. Такие капли и шарики представляют собой открытые объёмные электромагнитные резонаторы, они способны содержать в себе колебания, излучать волны, длины которых много больше размеров резонаторов, и принимать энергию излучений, накапливая ее в себе в виде энергии колебаний.
Была когда-то незаслуженно забытая классическая теория дальнодействия, в соответствии с которой электромагнитные волны в очень плотной материи должны быть очень медленными, и с ней мы здесь тоже в согласии.
Поскольку в нашем распоряжении нет материалов с таким большим замедлением волн, более реальной моделью ядра будем считать электромеханические резонаторы. Это кусочки материала, подобного кварцу или сегнетоэлектрикам. Полагаем также, что материал без потерь в нем энергии. В таких материалах электромагнитные поля вызывают деформации, а деформации - вновь поля, и электромагнитные процессы в нем сливаются воедино с механическими. Звуковые волны в таком материале сопровождаются электромагнитными полями и становятся волнами электромеханическими, но движутся со скоростью звука - в 100.000 раз медленнее света в пустоте. Многократно отражаясь от границ материала, волны становятся колебаниями и делают резонатор источником длинноволнового (в сравнении с размерами резонатора) электромагнитного излучения. К примеру, кристалл кварца, длиной несколько сантиметров, на нижней частоте резонанса излучает волны длиной около 5 км, т.е. размеры резонатора здесь ничтожны в сравнении с длиной волн, что нам и нужно. Еще, наверное, более подходящими будут капли электромагнитной жидкости, внутренние и поверхностные колебания которой в сильных полях также станут колебаниями электромеханическими, и также приведут к излучению достаточно длинных волн.
Будем считать такие резонаторы нашим лучшим приближением к ядру в его внешнем электромагнитном проявлении и его первичными макромоделями.
Те и другие модели ядра можно рассматривать как точечные колебательные системы. Внутренние колебательные процессы в них, как и в прочих объемных резонаторах, представляют собой электромагнитные или электромеханические волны, многократно отражаемые вовнутрь от границ материала и потому периодические. Частотный спектр колебаний дискретен. В зависимости от формы, поляризации и направлений возбужденных в нем внутренних волновых процессов, резонатор может излучать в пространство на каждой резонансной частоте и столь же разнообразно, как разнообразны формы внутренних колебаний. Резонатор может и вращаться. Колебания в нем и излучаемые поля – наведённые сторонними полями и потому разные в разных случаях. “Раскачивая” резонатор сторонними полями, можно заставить его излучать весьма разнообразно. Будем полагать, что этого многообразия достаточно для всех наших задач.
Естественно, то же явление самоорганизации излучающих колебаний будет действовать и на объёмный резонатор как модель ядра. И в нем, при достаточном разнообразии резонансов, сложится процесс, излучающий в дальнее пространство поле, точно равное полю излучения зарядов и ему противофазное. Заряды тогда будут вращаться, не сходя с орбит, т.к. энергии не теряют, принимая энергию излучения резонатора и излучая ее ответно. До тех пор, пока модель излучает, в ее ядре будут развиваться всё новые и новые процессы, способные отобрать в себя энергию этих излучений. Так будет продолжаться либо до полного погашения излучений, либо до исчерпания разнообразия резонансов, т.е. степеней свободы колебаний. Излучающие процессы в ядре вместе с процессами движения зарядов составят суммарный процесс в модели, в пространство не излучающий. Резонатор, даже один, не составной, может поддерживать устойчивое движение сразу множества зарядов на различных орбитах. Частотный спектр резонатора дискретен - дискретны и орбиты.
Итак, первичная модель атома построена, дано начальное объяснение причин сохранения в ней энергии и дискретного множества орбит. На этом остановимся. Из факта, что реальный атом не излучает, можно на основании классической теории сделать вывод, что атомное ядро является достаточно сложной для этого излучающей колебательной системой, и в нем возможно многообразие процессов, достаточное для того, чтобы в атоме всякий раз складывались неизлучающие процессы. Электроны устойчивы только на таких орбитах, при которых атом не излучает, т.е. при которых излучение ядра способно погашать излучение электронов. Реальное ядро может оказаться и более сложной колебательной системой, чем обычный объемный резонатор или жидкая капля, с еще большим разнообразием возможных в нем колебаний, поэтому возможности известных нам резонаторов не будем исследовать и уточнять.
Таким образом, мы можем представлять себе атом как электромагнитный аппарат природной автоматики, действующий строго по законам теории Фарадея-Максвелла, без каких-либо от нее отступлений. В модели пока не видно серьезных изъянов. Возможно, они обнаружатся далее или при расчетах, но мы моделями атомов больше заниматься не будем, т.к. первая цель достигнута: классическая теория перешагнула порог микромира, ее действенность в нем несомненна, и вернуться к постулату “электроны не излучают” уже невозможно.
Заметим еще раз, что не выдумывали представление об атомном ядре, а взяли его из классической физики. Мы почти ничего не можем о нем сказать. Для нас ядро - пока что просто плотная материя со столь же плотными электромагнитными свойствами (с очень большими постоянными и ), возможно и со способностью к электромеханическим колебаниям. И не вполне определенной формы. Возможно, заряды в ядре тоже подвижны, и это как-то изменяет характер процессов в нем. Возможно, оно действительно в чем-то подобно жидкой капле, как полагают некоторые современные теории. Все эти представления приводят к пониманию ядра как резонатора. И во всех случаях самоорганизация ведет к тому же результату.
Поговорим о самоорганизации процессов еще. Всякий приемник излучения, чтобы отобрать часть мощности из потока излучений в пространстве, должен тоже излучать в пространство в тех же направлениях, причем так, чтобы общая мощность потока уменьшилась. Иначе поток в пространстве оставался бы прежним, и прием энергии нарушал бы закон ее сохранения. Если приемником излучения служит колебательная система без внутренних потерь энергии, точнее: колебательный процесс в ней, то принятая энергия пополняет энергию этого же процесса (не другого же) и потому усиливает его, пока приток энергии не сравняется с оттоком. В то же время, излучения приемника могут приниматься ее источником и, в случае полного поглощения приемником всей мощности, источник тоже не теряет энергию, лишь равно участвуя в обмене энергией, питаясь энергией излучений приемника и излучая ответно. Конечно, есть множество и других вариантов движения излучений, но здесь нас интересует только этот.
Если электромагнитная система достаточно сложна, если в ней нет потерь энергии и возможно множество разнообразных излучающих колебаний, то в ней будут развиваться все процессы, которые могут получать энергию таким же путем, отбирая ее от потоков излучений из самой этой системы или извне ее. Это приводит систему к минимуму излучений или к полному их отсутствию. Потоки энергии сами собой замыкаются в системе. Имеет место тенденция к концентрации энергии в системе, поскольку самоорганизация постоянно как бы настраивает ее на прием внешней энергии. Концентрация энергии в реальных предметах несравнимо больше, чем в окружающем пространстве, и причины этого теперь понятны. Однако, когда существуют устойчивые энергетические уровни, как для зарядов в модели атома, и они достигнуты, излишняя энергия не принимается, она отражается или переизлучается.
Все системы микромира тоже являются колебательными. Вот этим явлением самоорганизации процессов мы можем объяснять отсутствие излучений из всех систем микромира в их устойчивых состояниях. Основное условие этой самоорганизации – достаточная сложность колебательно-волновой системы, достаточное разнообразие возможных излучений из нее. Отсутствие излучений из атомов говорит нам о том, что даже атом водорода – колебательная система, достаточно сложная для этого.
Заряды в нашей модели атома движутся под действием не только электростатических сил, но и сил динамических, создаваемых переменными полями излучения, потому мы не знаем, как связаны частоты их вращения с диаметрами орбит. Возможно, электроны также следует понимать как открытые объёмные резонаторы, и тогда они могут вращаться по каждой орбите с любой частотой или вовсе не вращаться, удерживаясь на расстоянии от ядра электродинамическими силами отталкивания отчасти или полностью. По-видимому, спектры излучения атомов всё же объясняются частотами вращения электронов. А утверждения, что классическая теория не способна их объяснить, основаны на заведомо ошибочном предположении, что электроны движутся под действием только электростатических сил.
Мы пришли к выводу, что атомное ядро имеет способность быть сложной колебательной системой, неким резонатором, т.е. нести в себе во множестве разнообразные колебательные процессы, способные излучать и принимать энергию электромагнитных волн. Будем считать это истиной до тех пор, пока не найдется лучшего объяснения атома и причин, по которым в нем сохраняется энергия. В соответствии с представлениями классической физики (элементы микромира – это объемные физические тела с какими-то внутренними электромагнитными свойствами), аналогичные колебательные свойства присущи и электронам, и прочим элементам микромира. Такого единообразия и следует ожидать от природы. Это же подтверждается всем множеством экспериментов, в которых элементы микромира проявляют волновые свойства. Микроскопическая колебательная система, содержащая электромагнитные колебания и несущая волновое поле, всегда проявится в экспериментах как "частица-волна". И вряд ли возможно построить в рамках логики и здравого смысла какое-то иное ее образное представление. Это какая-то колебательная система, способная нести (и не нести) колебания и волны. И этого достаточно для понимания с позиций классической физики всех проявлений частицами микромира волновых свойств.