Современные теории предполагают, что энергия вакуума проявляется отнюдь не однозначно. Вакуум может быть возбужденным и находиться в одном из многих состояний с сильно различающимися энергиями, подобно тому, как атом может возбуждаться, переходя на уровни с более высокой энергией, причем различие между самой низкой и самой высокой энергиями невообразимо велико.
Очевидно, вакуум играет роль базовой формы материи. На самой ранней фазе эволюции Вселенной именно ему отводится ведущая роль. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательное давление, которое равносильно гравитационному отталкиванию такой величины, которое и вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом».
С началом стремительного расширения Вселенной возникает время и пространство. По разным оценкам период «раздувания» занимает невообразимо малый промежуток времени - до 10-33 с после «начала». Он называется инфляционным периодом. За это время Вселенная успевает раздуться до гигантского «пузыря», радиус которого на несколько порядков превышает радиус современной нам Вселенной, но там практически отсутствуют частицы вещества. Это еще не то расширение, о котором мы говорили, а предпосылка к нему. К концу фазы инфляции Вселенная была пустой и холодной. Но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно горячей. Этот всплеск тепла обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Когда это состояние вакуума распалось, его энергия высвободилась в виде излучения, которое мгновенно нагрело Вселенную до 1027 К. С этого момента Вселенная развивалась согласно стандартной теории горячего Большого взрыва.
Доступная астрономическим наблюдениям современная Вселенная состоит на 99% из водорода и гелия, но в первоначальном плазмоподобном[2] сгустке, не было ни водорода, ни гелия. Теория Большого взрыва утверждает, что от появления протовещества до образования ядер водорода и гелия прошло немногим более трех секунд. На этом временном промежутке стремительно преобразовывались вакуум и вещество, а этапы преобразования определялись процессами расширения и остывания сгустка.
При температуре 1027 К, если только справедлива гипотеза Большого объединения, лептоны[3] и кварки[4] в сгустке свободно превращались друг в друга, то есть были неразличимы. В среде существовал единый вид взаимодействия и роль его частицы-посредника выполнял скалярный бозон, названный X-бозоном. Это была необычайно массивная частица, порядка
10-9 г, что в 1014 раза больше массы протона. Эти частицы исчезли после снижения температуры в ранней Вселенной, остатков их пока не найдено, ожидать, что такие частицы могут быть обнаружены, не приходится, так как подобных температур нет нигде в современной Вселенной.
Через 10-33 секунды после «начала» кварки и лептоны разделились, а сильное взаимодействие отделилось от электрослабого. Единый Х-бозон распался на глюоны и безмассовый бозон - переносчик электрослабого взаимодействия. К моменту прекращения переходов кварков в лептоны число кварков несколько превышало число антикварков (вообще, современное существование Вселенной связано с нарушениями симметрии), а число электронов - число позитронов. В общем сгустке число частиц в каждом миллиарде оказывалось на единицу больше числа античастиц. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.
Следующая критическая точка – 10-10 с, когда температура снизилась до 1015 К. После этого безмассовый электрослабый бозон разделился на безмассовый фотон и три тяжелых векторных бозона. Электрослабое взаимодействие разделилось на слабое и электромагнитное. Во Вселенной утвердились все четыре известные ныне науке фундаментальные взаимодействия.
При снижении температуры до 1015 К прекращается свободное существование кварков, они сливаются в адроны.
Ранний период развития Вселенной завершается лептонно-фотонной эрой. Образуются барионы и антибарионы, которые аннигилируют, оставляя после себя фотоны и выделившуюся энергию. Но так как барионов немного больше, чем антибарионов, оставшиеся стали примесью в однородной смеси фотонов и лептонов. Такое состояние было достигнуто через 0,01 с после «начала».
В течение первой секунды температура снизилась до 10 млрд. градусов. Этого оказалось достаточно для отделения от газовой смеси нейтрино и антинейтрино. К 14 секунде температура упала до 3 млрд. градусов и при этом появились условия для соединения и аннигиляции электронов и позитронов. При этом электронов опять-таки было немного больше, чем позитронов. Их избыток и суммарный отрицательный заряд точно компенсировал суммарный положительный заряд протонов, которые появились раньше. Также в протоны превращались свободные нейтроны, пока в конце концов отношение числа протонов к числу нейтронов не стало равно 8:1, оно сохранилось в дальнейшем и определило соотношение водорода и гелия во Вселенной.
Спустя 3 минуты 2 секунды после «начала» температура снизилась до миллиарда градусов. На этом завершилось формирование ранней Вселенной и начался процесс соединения протонов и нейтронов в составные ядра - нуклеосинтез. Плотность вещества в что время уже была в сто раз меньше плотности воды, размеры Вселенной возросли почти до 40 световых лет (для расширения пространства скорость света не является предельной). Через полчаса после «начала» барионное вещество Вселенной состояло из 28% гелия, остальное - ядра водорода (протоны). Но барионное вещество - это ничтожная часть Вселенной, ее основными компонентами были фотоны и нейтрино.
Затем почти 500 тысяч лет шло медленное остывание. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла примерно до 3 тысяч градусов, протоны (ядра водорода) и ядра атомов гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. Излучение отделилось от атомарного вещества и образовало то, что в нашу эпоху назвали реликтовым излучением. В своей структуре реликтовое излучение сохранило «память» о структуре барионного вещества в момент разделения. Сегодня его энергия снизилась до температуры всего 3 К. И оно излучает радиоволны в сантиметровом диапазоне. Эти радиоволны были открыты в 1964 г. и стали серьезным подтверждением концепции «горячей» Вселенной. Они равномерно поступают из всех точек небосвода и не связаны с каким-нибудь отдельным радиоисточником.
В результате мы имеем однородную Вселенную, представляющую собой смесь трех почти не взаимодействующих субстанций: лептонов (нейтрино и антинейтрино), реликтового излучения (фотоны) и барионного вещества (атомы водорода, гелия и их изотопы). В сложившихся условиях, когда уже нет ни высоких температур, ни больших давлений, казалось, перспективой было бы дальнейшее расширение и остывание Вселенной, завершающееся образованием «лептонной пустыни» - чем-то вроде тепловой смерти. Но этого не произошло, напротив, произошел скачок, создавший современную структурную Вселенную. По современным оценкам, переход от однородной Вселенной к структурной занял от 1 до 3 миллиардов лет.
Предполагается, что в расширяющейся Вселенной возникают и развиваются случайные уплотнения вещества. Силы тяготения внутри уплотнения проявляют себя заметнее, чем вне него. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, и его плотность постепенно нарастает. Появление таких уплотнений и стало началом рождения крупномасштабных структур во Вселенной. Согласно расчетам, из этих сгущений должны были возникать плоские образования, напоминающие блины.
Сжатие водородно-гелиевой плазмы в «блины» неизбежно приводило к значительному повышению их температуры. В конечном счете, сжатие «блина» порождало его неустойчивость, и он распадался на более мелкие подсистемы, которые, возможно, стали зародышами галактик. Подсистемы, в свою очередь, достигали состояния неустойчивости и распадались на более мелкие уплотнения, ставшие зародышами звезд первого поколения.
Образование разномасштабных структур во Вселенной открыло возможность для новых усложнений вещества. Важнейшим узловым моментом стало образование всей совокупности элементов таблицы Менделеева. Они появились в звездах в ходе процессов звездного нуклеосинтеза.
Согласно современным представлениям, присутствующие в межзвездной среде тяжелые элементы изготовлены в звездах типа красных гигантов. Желтые карлики типа нашего Солнца поддерживают свое состояние главным образом в результате термоядерной реакции, превращающей водород в гелий. Красные гиганты обладают массой, в несколько раз превышающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает нескольких сотен миллионов градусов, что оказывается достаточным для протекания реакций углеродного цикла - слияния ядер гелия в углерод. Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3 - 10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа.