Смекни!
smekni.com

Что такое звезды (стр. 2 из 5)

Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 102—103и радиус порядка 10—60 R ) и группу красных сверхгигантов (L 10 L , R 200—300 R ). Звезды горячие (T ЗОООО К) и яркие (L 104 — 106L , R 40 R ) называются белыми сверхгигантами. За­метьте, что холодных и слабых звезд гораздо больше, чем горячих и ярких.

В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10-4L , RO,OlR ).

Итак, мы видим, что светимость звезды и спектраль­ный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления, лежащие в ее основе. Как это сделала современная астро­физика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали эво­люционное значение: предполагалось, что звезды эволю­ционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось, что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в ле­вой верхней части диаграммы, называют "ранними", а звезды другого конца главной последовательности — "поздними".

Звезды - ядерные реакторы

В большинстве термоядерных реакций энергия освобождается при соединении четырех протонов в одно ядро гелия. Такое соединение протонов в ядро гелия может идти разными путями, но конечный результат будет один и тот же.

Опишем сначала протон-протонную реакцию.

Эта реакция начинается с таких столкновений между протона­ми, в результате которых получается ядро тяжелого водорода — дейтерия. Даже в условиях звездных недр это происходит очень редко. Как правило, столкновения между протонами являются упругими: после столкновения частицы просто разлетаются в разные стороны. Для того чтобы в результате столкновения два протона слились в одно ядро дейтерия, необходимо, чтобы при таком столкновении выполнялось два независимых условия. Во-первых, надо, чтобы у одного из сталкивающихся протонов кинети­ческая энергия раз в двадцать превосходила бы среднюю энергию тепловых движений при температуре звездных недр. Как уже говорилось выше, только одна стомиллионная часть протонов имеет такую относительно высокую энергию, необходимую для преодо­ления «кулоновского барьера». Во-вторых, необходимо, чтобы за время столкновения один из двух протонов успел бы превратиться в нейтрон, испустив позитрон и нейтрино. Ибо только протон с нейтроном могут образовать ядро дейтерия! Заметим, что длитель­ность столкновения всего лишь около 10-21 секунды (оно порядка классического радиуса протона, поделенного на его скорость). Если все это учесть, то получается, что каждый протон имеет ре­альные шансы превратиться таким способом в дейтерий только раз в несколько десятков миллиардов лет. Но так как протонов в недрах звезд достаточно много, такие реакции, и притом в нужном коли­честве, будут иметь место.

По-другому складывается судьба вновь образовавшихся ядер дейтерия. Они "жадно", всего лишь через несколько секунд, "загла­тывают" какой-нибудь близкий протон, превращаясь в изотоп гелия 3Не. После этого возможны три пути (ветви) ядерных реак­ций. Чаще всего изотоп гелия будет взаимодействовать с подоб­ным себе ядром, в результате чего образуется ядро "обыкновенно­го" гелия и два протона. Так как концентрация изотопа Не чрез­вычайно мала, это произойдет через несколько миллионов лет. Напишем теперь последовательность этих реакций и выделяющуюся при них энергию.

Здесь буква v означает нейтрино, а у — гамма-квант. Не вся освободившаяся в результате этой цепи реакций энергия передается звезде, так как часть энергии уносится нейтрино. С уче­том этого обстоятельства энергия, выделяемая при образовании одного ядра гелия, равна 26,2 МэВ или 4,2 •10-5 эрг.

Вторая ветвь протон-протонной реакции начинается с соеди­нения ядра Не с ядром "обыкновенного" гелия 4Не, после чего образуется ядро бериллия 7Be. Ядро бериллия в свою очередь может захватить протон, после чего образуется ядро бора 8В, или захватить электрон и превратиться в ядро лития. В первом случае образовавшийся радиоактивный изотоп 8В претерпевает бета-рас­пад:

Заметим, что нейтрино, образовавшиеся при этой реакции, как раз и обнаружили при помощи уникальной, дорогостоящей установки. Радиоактивный берил­лий Ве весьма неустойчив и быстро распадается на две альфа-частицы. Наконец, последняя, третья ветвь протон-протонной реак­ции включает в себя следующие звенья: 7Ве после захвата электрона превращается в 7li, который, захватив протон, превращается в неустойчивый изотоп 8Be, распадающийся, как и во второй цепи, на две альфа-частицы.

Еще раз отметим, что подавляющее большинство реакций идет по первой цепи, но роль "побочных" цепей отнюдь не мала.

Перейдем теперь к рассмотрению углеродно-азотного цикла. Этот цикл состоит из шести реакций.

Поясним содержание этой таблицы. Протон, сталкиваясь с яд­ром углерода, превращается в радиоактивный изотоп азота 13N. При этой реакции излучается -квант. Изотоп 13N, претерпевая - распад с испусканием позитрона и нейтрино, превращается в изотоп углерода 13С. Последний, сталкиваясь с протоном, превра­щается в обычное ядро азота 14N. При этой реакции также испу­скается -квант. Далее, ядро азота сталкивается с протоном, после чего образуется радиоактивный изотоп кислорода 15О и -квант. Затем этот изотоп путем -распада превращается в изотоп азота 15N. Наконец, последний, присоединив к себе во время столкнове­ния протон, распадается на обычный углерод и гелий. Вся цепь реакций представляет собой последовательное "утяжеление" ядра углерода путем присоединения протонов с последующими -распадами. Последним звеном этой цепи является восстановление первоначального ядра углерода и образование нового ядра гелия за счет четырех протонов, которые в разное время один за другим присоединились к 12С и образующимся из него изотопам. Как вид­но, никакого изменения числа ядер 12С в веществе, в котором про­текает эта реакция, не происходит. Углерод служит здесь "ката­лизатором" реакции.

Во втором столбце приводится энергия, выделяющаяся на каждом этапе углеродно-азотной реакции. Часть этой энергии выделяется в форме нейтрино, возникающих при распаде радиоак­тивных изотопов 13N и 15О. Нейтрино свободно выходят из звезд­ных недр наружу, следовательно, их энергия не идет на нагрев вещества звезды. Например, при распаде 15Оэнергия образующе­гося нейтрино составляет в среднем около 1 МэВ. Окончательно при образовании одного ядра гелия путем углеродно-азотной реакции выделяется (без учета нейтрино) 25 МэВ энергии, а нейтрино уносят около 5% этой величины.

В третьем столбце таблицы II приведены значения скоро­сти различных звеньев углеродно-азотной реакции. Для - процессов это просто период полураспада. Значительно труднее опре­делить скорость реакции, когда происходит утяжеление ядра пу­тем присоединения протона. В этом случае надо знать вероятно­сти проникновения протона через кулоновский барьер, а также вероятности соответствующих ядерных взаимодействий, так как само по себе проникновение протона в ядро еще не обеспечивает интересующего нас ядерного превращения. Вероятности ядерных реакций получаются из лабораторных экспериментов либо вычис­ляются теоретически. Для их надежного определения потребо­вались годы напряженной работы физиков-ядерщиков, как теоре­тиков, так и экспериментаторов. Числа в третьем столбце дают "время жизни" различных ядер для центральных областей звезды с температурой в 13 миллионов Кельвинов и плотностью водорода 100 г/см3. Например, для того чтобы при таких условиях ядро 12С, захватив протон, превратилось в радиоактивный изотоп углерода, надо "подождать" 13 миллионов лет! Следовательно, для каждого "активного" (т. е. участвующего в цикле) ядра реакции проте­кают чрезвычайно медленно, но все дело в том, что ядер до­статочно.

Основным источником энергии Солнца, температура центральных областей которого близка к 14 миллионам кельвинов, является протон- протонная реакция. Для более массивных, а следовательно, и более горячих звезд существенна углеродно-азотная реакция, зависимость которой от температуры значительно более сильная.

Непрерывно идущие в центральных областях звезд ядерные реакции «медленно, но верно» меняют химический состав звезд­ных недр. Главная тенденция этой химической эволюции—пре­вращение водорода в гелий. Помимо этого в процессе углеродно-азотного цикла меняется относительная концентрация различных изотопов углерода и азота до тех пор, пока не установится неко­торое определенное равновесие. При таком равновесии количество реакций за единицу времени, приводящих к образованию какого-нибудь изотопа, равно количеству реакций, которые его "разру­шают". Однако время установления такого равновесия может быть очень большим. А пока равновесие не установится, относительные концентрации различных изотопов могут меняться в самых широ­ких пределах.

Ядерные процессы играют, как мы видели в этом параграфе, фундаментальную роль в длительной, спокойной эволюции звезд, находящихся на главной последовательности. Но, кроме того, их роль является определяющей при быстро протекающих нестацио­нарных процессах взрывного характера, являющихся поворот­ными этапами в эволюции звезд. Наконец, даже, казалось бы, для такой в выс­шей степени тривиальной и очень "спокойной" звезды, какой яв­ляется наше Солнце, ядерные реакции открывают возможность объяснения явлений, которые представляются очень далекими от ядерной физики.