Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:
и начальных условиях:
Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)
Подстановка выражения (4) в уравнение (1) дает:
Из которого наша задача сводится к отысканию решений уравнений:
Используя это условие X(0)=0, X(l)=0, докажем, что
a) Пусть
откуда
б) Пусть
получим
в)
Уравнения имеют корни :
получим:
где
откуда
Учитывая это, можно записать:
и, следовательно
но так как A и B разные для различных значений n то имеем
где
Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем
Эти равенства являются соответственно разложениями функций
где
Интеграл Фурье
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1) абсолютной интегрируемости на
2) на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой
3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)
Интегралом Фурье функции f(x) называется интеграл вида:
, где
Интеграл Фурье для четной и нечетной функции
Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.
Учитывая, что
Таким образом, интеграл Фурье четной функции f(x) запишется так:
где a(u) определяется равенством (3).
Рассуждая аналогично, получим, для нечетной функции f(x) :
и, следовательно, интеграл Фурье нечетной функции имеет вид:
где b(u) определяется равенством (4).
Комплексная форма интеграла Фурье
где
Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).
Если в формуле (5) заменить c(u) его выражением, то получим:
Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу
в действительной форме и обратно осуществим с помощью формул:
Формулы дискретного преобразования Фурье
Обратное преобразование Фурье.
где n=1,2,... , k=1,2,...
Дискретным преобразованием Фурье - называется N-мерный вектор
при этом,
Разложение четной функции в ряд
Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до