Из рассмотренных вычислений можно заключить, что для достижения заданной вероятности 0.95 необходимо шесть резервных схем.
Этап II
1 Постановка задачи
- найти неизвестную константу функции f(x);
- выписать функцию распределения, построить их графики;
- найти математическое ожидание и дисперсию;
- найти вероятность попадания в интервал (1;4).
2 Теоретическая часть
Под случайной величиной понимается величина, которая в результате измерения (опыта) со случайным исходом принимает то или иное значение.
Функция распределения случайной величины Х называется вероятность того, что она примет значение меньшее, чем заданное х:
.Основные свойства функции распределения:
1) F(x) - неубывающая функция своего аргумента, при
.2)
.3)
.Плотностью распределения непрерывной случайной величины Х в точке х называется производная ее функции распределения в этой точке. Обозначим ее f(x) :
Выразим функцию распределения F(x) через плотность распределения f(x):
Основные свойства плотности распределения f(x):
1. Плотность распределения - неотрицательная функция
.2. Интеграл в бесконечных пределах от плотности распределения равен единицы:
.Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных ее значений на вероятности этих значений.
Перейдем от дискретной случайной величины Х к непрерывной с плотностью f(x).
Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной величины:
Для непосредственного вычисления дисперсии непрерывной случайной величины служит формула:
3 Практическая часть
Для нахождения неизвестной константы c применим выше описанное свойство:
, откуда, или
Найдем функцию распределения основываясь на теоретической части:
- на интервале
- на интервале
- на интервале
Теперь построим график функций f(x)- плотности распределения (рис. 2.1 - кривая распределения) и F(x)- функции распределения (рис. 2.2)
Рис. 2.1
Рис. 2.2
Следуя постановке задачи найдем математическое ожидание
и дисперсию для случайной величины X :Производя еще одну замену
приходим к первоначальной формуле из чего можно сделать вывод, что математическое ожидание с.в. Х равно :Также находим дисперсию :
И последнее, вероятность попадания в интервал (1;4) находим как :
Этап III
1 Постановка задачи
Дана случайная выборка объема n=100 :
104.6 | 95.2 | 82.0 | 107.7 | 116.8 | 80.0 | 100.8 | 124.6 | 99.4 | 101.4 |
100.6 | 86.3 | 88.2 | 103.8 | 98.5 | 111.8 | 83.4 | 94.7 | 113.6 | 74.7 |
114.3 | 86.9 | 106.6 | 94.9 | 105.9 | 88.6 | 96.6 | 93.7 | 90.8 | 96.5 |
110.2 | 100.0 | 95.6 | 102.9 | 91.1 | 103.6 | 94.8 | 112.8 | 100.1 | 95.3 |
113.9 | 113.9 | 86.1 | 110.3 | 88.4 | 97.7 | 70.1 | 100.5 | 90.9 | 94.5 |
109.1 | 82.2 | 101.9 | 86.7 | 97.4 | 102.1 | 87.2 | 94.71 | 112.4 | 94.9 |
111.8 | 99.0 | 101.6 | 97.2 | 96.5 | 102.7 | 98.6 | 100.0 | 86.2 | 89.4 |
85.0 | 86.6 | 122.7 | 101.8 | 118.3 | 106.1 | 91.3 | 98.4 | 90.4 | 95.1 |
93.1 | 110.4 | 100.4 | 86.5 | 105.4 | 96.9 | 101.9 | 83.8 | 107.3 | 107.5 |
113.7 | 102.8 | 88.7 | 112.5 | 79.4 | 79.1 | 98.1 | 103.8 | 107.2 | 102.3 |
2 Теоретическая часть
Под случайной выборкой объема n понимают совокупность случайных величин
, не зависимых между собой. Случайная выборка есть математическая модель проводимых в одинаковых условиях независимых измерений.Упорядоченной статистической совокупностью будем называть случайную выборку величины в которой расположены в порядке возрастания
.Размах выборки есть величина r=Xn-X1, где Xn - max , X1 - min элементы выборки.
Группированным статистическим рядом называется интервалы с соответствующими им частотами на которые разбивается упорядоченная выборка, причем ширина интервала находится как :
тогда частота попадания в отрезок
находим по формуле :, где Vi - число величин попавших в отрезок
, причем . Поделив каждую частоту на получим высоту для построения гистограммы.Построив гистограмму мы получили аналог кривой распределения по которой можем выдвинуть гипотезу о законе распределения. Выровнять статистическое распределение с помощью закона о котором выдвинули гипотезу, для этого нужно статист. среднее mx* и статистическую дисперсию Dx* .
Которые находим как
Естественной оценкой для мат. ожидания является среднее арифметическое значение :
.Посмотрим, является ли эта оценка не смещенной , для этого найдем ее мате-матическое ожидание :
,то есть оценка
для m является несмещенной.Найдем дисперсию этой оценки :
Эффективность или неэффективность оценки зависит от вида закона распределения случайной величины X .Если распределение нормально, то оценка
для мат. ожидания m является и эффективной.Перейдем к оценке для дисперсии D. На первый взгляд наиболее естественной представляется статистическая дисперсия D*, то есть среднее арифметическое квадратов отклонений значений Xi от среднего :